The number \boldsymbol{e}

Work on this together in your group, but each person will turn in their work individually. Use your calculator and plenty of scratch paper. Write your answers on this paper-add your own paper if you need more space.

Consider the function $g(h)=(1+h)^{1 / h}$.

1. Fill in the table for values of $g(h)$ for h near 0 .

h	1	0.1	0.01	0.001	0.00001
$g(h)$					

2. To the nearest 0.000000001 , estimate $\lim _{h \rightarrow 0} g(h)=$ \qquad .

This is an approximation of the irrational number \boldsymbol{e}. One definition is: $\boldsymbol{e}=\lim _{h \rightarrow 0}(1+h)^{1 / h}$. This \boldsymbol{e} is not a function, it is just a number. So what's the big deal about \boldsymbol{e} ? When we use the number \boldsymbol{e} as the base of an exponential function, it has a very unique property. First, let's look at this numerically. Let $f(x)=e^{x}$. Write all your answers to nine decimal places.
3. What is the value of our function $f(x)=e^{x}$ at $x=1$? $f(1)=$ \qquad .

Recall that the definition of the derivative function is given by $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$. We will approximate the value of the derivative numerically at $x=1$.
4. Fill in the table of values for smaller and smaller values of h (use 9 decimal places).

h	1	0.1	.001	.0001	.000000001
$\frac{f(1+h)-f(1)}{h}$					

5. Give your 9-decimal place approximation for $f^{\prime}(1)$. $f^{\prime}(1)=$ \qquad
6. How does your answer compare to your answer for \#3 above? Write an equation relating the value of the function at $x=1$ to the value of the derivative at $x=1$.
7. Now you get to make a choice. Pick any number you want and call it p. (Use a different number than those around you.) Write your value. $p=$ \qquad
8. Repeat problems 3 through 6 with your value of p.

$$
f(p)=
$$

\qquad

Fill in the table of values for smaller and smaller values of h (use 9 decimal places).

h	1	.1	.001	.0001	.000000001
$\frac{f(p+h)-f(p)}{h}$					

Give your 9-decimal place approximation for the value of the derivative at p :

$$
f^{\prime}(p)=
$$

\qquad

Write an equation relating the value of the function at $x=p$ to the value of the derivative at $x=p$.
9. Consult with your group and conjecture a guess as to the relationship between the value of the function $f(x)=e^{x}$ and the value of its derivative $f^{\prime}(x)$ for all x.

We will now confirm your conjecture algebraically using the definition of the derivative. We want to show that for $f(x)=e^{x}$, its derivative $f^{\prime}(x)$ is also equal to e^{x}. Follow the simplifications carefully:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h} \\
& =e^{x} \cdot \lim _{h \rightarrow 0} \frac{\left(e^{h}-1\right)}{h}
\end{aligned}
$$

All we have left to find is the value of $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}$.This limit can be found using our definitions, plus a bit of algebra. Since $\boldsymbol{e}=\lim _{h \rightarrow 0}(1+h)^{1 / h}$, we can substitute this expression into our limit.
10. Show that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.

With this limit solved, we now have $f^{\prime}(x)=\frac{d}{d x}\left(e^{x}\right)=e^{x}$
Remember that \boldsymbol{e} is not a function-it is just a number. But when it is used as the base of an exponential function, the resulting function $f(x)=e^{x}$ has a derivative that is identical to itself for all x. In other words, at every point of the graph of $f(x)=e^{x}$, the slope at that point matches the value of the function itself at that point. $f(x)=e^{x}$ is the only function in mathematics for which this is true at every point.

That's why \boldsymbol{e} is the natural exponential base.

