More on limits, continuity, and differentiability

1. Discuss the continuity of the function $R(t)=t^{2} \cdot e^{1 / t}$. In particular, if there is a discontinuity, determine if it is removable or essential and show algebraic work.
2. Determine if the following function is continuous at $x=1$. If so, determine if it is differentiable at $x=1$.

$$
f(x)= \begin{cases}\ln (x) & x>1 \\ (1.7)^{x}-1.7 & x \leq 1\end{cases}
$$

3. Determine the values of A and B so that the function $g(r)$ is continuous.

$$
g(r)= \begin{cases}\frac{r \log \left(r^{2}\right)}{r+1} & r \neq 0,-1 \\ A & r=0 \\ B & r=-1\end{cases}
$$

4. The analysis of blood flow through the heart leads to a function of the form

$$
f(r)=-2|r|+\sqrt{1-4 r^{2}+4|r|} .
$$

A. Investigate the differentiability of $f(r)$ at $r=0$ graphically.
B. Rewrite $f(r)$ without absolute values.
C. Use your equation in part B to find the slope of $f(r)$ for $r>0$ and for $r<0$.
D. What do your answers to part C tell you about the differentiability of $f(r)$ at $r=0$?

