1. A function T(x) is continuous and differentiable with values given in the table at the right.

		1.0				
7	$\Gamma(x)$	1.06	2.2	3.2	2.8	3.1

Use the values in the table to estimate the following

A.
$$T'(1.4) \approx T'(2.4) \approx$$

B.
$$\lim_{h \to 0} \frac{T(1.4+h) - T(1.4)}{h} \approx$$

C. The average rate of change of T(x) between x = 1.4 and x = 2.4.

D. The rate of change of T(x) at x = 1.

E. The equation of the tangent line to T(x) at x = 1.

2. The values of the derivative F'(x) are given in the table:

x	12	12.4	13
F'(x)	2	3	3.5

Estimate the values of F(x) in the table below.

x	12	12.4	13
F(x)	8		

3. Let $F(x) = 10^x$. Estimate F'(1) using a numerical approach. Give your answer to 4 decimal places.

4. $G(s) = \frac{1}{s^2}$. Find G'(2) using an algebraic approach. Give an exact answer.