1. A function $T(x)$ is continuous and differentiable with values given in the table at the right.

x	1.0	1.4	1.8	2.2	2.6
$T(x)$	1.06	2.2	3.2	2.8	3.1

Use the values in the table to estimate the following
A. $T^{\prime}(1.4) \approx$
$T^{\prime}(2.4) \approx$
B. $\lim _{h \rightarrow 0} \frac{T(1.4+h)-T(1.4)}{h} \approx$
C. The average rate of change of $T(x)$ between $x=1.4$ and $x=2.4$.
D. The rate of change of $T(x)$ at $x=1$.
E. The equation of the tangent line to $T(x)$ at $x=1$.
2. The values of the derivative $F^{\prime}(x)$ are given in the table:

x	12	12.4	13
$F^{\prime}(x)$	2	3	3.5

Estimate the values of $F(x)$ in the table below.

x	12	12.4	13
$F(x)$	8		

3. Let $F(x)=10^{x}$. Estimate $F^{\prime}(1)$ using a numerical approach. Give your answer to 4 decimal places.
4. $G(s)=\frac{1}{s^{2}}$. Find $G^{\prime}(2)$ using an algebraic approach. Give an exact answer.
