POWER FUNCTIONS AND EXPONENTIAL FUNCTIONS

1.	Graph $y = \frac{1}{r}$ using the window [-5,5] x [-10,10].	
	a. As <i>x</i> approaches infinity, <i>y</i> approaches	
	b. As <i>x</i> approaches negative infinity, <i>y</i> approaches	
	c. As <i>x</i> approaches zero from the left, <i>y</i> approaches	
	d. As <i>x</i> approaches zero from the right, <i>y</i> approaches	
	e. The equations of the asymptotes are	

- 2. Graph $y = \frac{1}{x^2}$ using the window [-5,5] x [-2,10]. a. As *x* approaches infinity, *y* approaches______. b. As *x* approaches negative infinity, *y* approaches______. c. As *x* approaches zero from the left, *y* approaches______. d. As *x* approaches zero from the right, *y* approaches______. e. The equations of the asymptotes are ______.
- 3. Graph y = x, $y = \sqrt{x^3}$, and $y = x^2$ together using the window [0,2] x [0,2].
 - a. Why should we restrict the domain to $x \ge 0$?
 - b. In addition graph $y = \sqrt{x}$ and $y = \sqrt[3]{x}$. What is the relationship of all the graphs for $0 \le x \le 1$? For x > 1?
 - c. Which of the graphs above are concave up? Concave down? Would $y = \sqrt{x^5}$ be concave up or down? Would $y = \sqrt[4]{x}$ be concave up or down?

- 4. Graph y = 50x² and y = x³ using the window [-25,25] x [-5000,5000].
 a. Which of these functions seems to dominates the other?
 b. Change the window to [0,50] x [0,25000]. Does your answer to the previous question change?
 c. Change the window to [0,100] x [0,250000]. Does your answer to the previous question change?
- 5. Graph $y = 100x^2$ and $y = 0.01x^3$ using the window [-5000,5000] x [-10⁹, 10⁹].

a. Which of these functions seems to dominates the other?	
b. Change the window to $[-10000, 10000] \times [-10^{10}, 2\times 10^{10}]$. Does your answer to the previous questions change?	
c. True or false. As long as the coefficients are greater than zero, the function with the higher power always dominates.	

- 6. Graph $y = x^3$ and $y = 2^x$ using the window [-5,5] x [-10,10].
 - a. Which of these functions seems to dominate the other?
 - b. Change the window to [-1,10] x [-1,1000]. Does your answer change?
 - c. Change the window to [-1,15] x [-1,1000]. What happens?
 - d. Change the window to [-1,20] x [-1,10000]. Which function dominates?
- 7. Graph $y = 2^{-x}$ and $y = x^{-2}$ using the window [1,7] x [0,0.4].
 - a. Are these functions increasing or decreasing?
 - b. Which function seems to approach the *x*-axis faster?
 - c. Compare the behaviors of the functions near x = 0.