NEW FUNCTIONS FROM OLD

1. Graph $y=x^{2}-4 x+7, y=(x+3)^{2}-4(x+3)+7$, and $y=(x-3)^{2}-4(x-3)+7$ using the window $[-4,9] \times[0,9]$.
a. How do these graphs differ? How are they similar?
b. Given any function $y=f(x)$, what is the effect of the transformation $y=f(x-h)$? Include the sign of h.
2. Graph $y=x^{2}-4 x+7, y=\left(x^{2}-4 x+7\right)-2$, and $y=\left(x^{2}-4 x+7\right)+2$ using the window $[-4,9] \times[0,9]$.
a. How do these graphs differ? How are they similar?
b. Given any function $y=f(x)$, what is the effect of the transformation $y=f(x)+k$? Include the sign of k.
3. Graph $y=x^{2}-4 x+7, y=-\left(x^{2}-4 x+7\right)$, and $y=(-x)^{2}-4(-x)+7$ using the window $[-4,9] \times[-9,9]$.
a. How do these graphs differ? How are they similar?
b. Given any function $y=f(x)$, what is the effect of the transformation $y=-f(x)$? The transformation $y=f(-x)$?
4. Graph $y=x^{2}, y=(2 x)^{2}$, and $y=(0.4 x)^{2}$ using the window $[-8,8] \times[-2,9]$.
a. How do these graphs differ? How are they similar?
b. Given any function $y=f(x)$, what is the effect of the transformation $y=f(c x)$? Include the size of c.
5. Graph $y=x^{2}, y=2.5 x^{2}$, and $y=0.3 x^{2}$ using the window $[-8,8] \times[-2,9]$.
a. How do these graphs differ? How are they similar?
b. Given any function $y=f(x)$, what is the effect of the transformation $y=c \cdot f(x)$? Include the size of c.
c. Compare the graphs of $y=2.5 x^{2}$ and $y=(\sqrt{2.5 x})^{2}$.

6. How would the graph of $y=-3 f(x+5)-4$ compare to $y=f(x)$?
7. Write an expression that would represent a graph of $y=f(x)$ that has been shifted right 2 units and then reflected across the y-axis. Does the order matter?
