1. Sketch the angle θ in standard position. Then find the exact values for $\cos \theta$ and $\tan \theta$.
A. $\theta=\frac{-7 \pi}{3}$
B. $\theta=\frac{5 \pi}{4}$
C. $\theta=\frac{5 \pi}{6}$
D. $\theta=\pi$
2. In each case, determine the quadrant(s) for angle T.
A. $\sin T<0$ and $\cos T>0$
B. $\cos T<0$ and $\tan T<0$
C. $\sec T>0$ and $\csc T>0$
D. $\cot T<0$ and $\cos ^{2} T>0$
3. Solve for the angle so that $0 \leq$ angle $<2 \pi$. In each case there are two solutions.
A. $\sin \theta=\frac{-\sqrt{3}}{2}$
B. $\tan \beta=0$
C. $\sec \alpha$ is undefined
4. Find the exact value for $\csc A$.
$(-7,3)$

5. Solve for the variable so that $0 \leq$ variable $\leq \pi$. Express your answers in radians.
A. $\frac{1+\tan y}{\sin y}=0$
B. $2 \cos ^{2} t-16=0$
C. $\sin (2 x)-\cos (x)=0$
6. Find the exact value for $\csc \left(\tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)\right)$. Your answer will be in terms of x.
7. Express the area of this triangle in terms of A, b, and c.
a

c

C
a

b
A
c
8. Simplify completely: $\quad \frac{(1-\cos \theta) \cos \theta-\sin \theta \cdot \sin \theta}{(1-\cos \theta)^{2}}$

