IMPROPER INTEGRALS (no closed form)

1. Use graphs to answer the following questions.

If $\int_{a}^{\infty} f(x) d x=K$ and $0<g(x) \leq f(x)$, what can we say about $\int_{a}^{\infty} g(x) d x$?

If $\int_{a}^{\infty} f(x) d x=K$ and $0<f(x) \leq g(x)$, what can we say about $\int_{a}^{\infty} g(x) d x$?

If $\int_{a}^{\infty} f(x) d x$ diverges and $0<f(x) \leq g(x)$, what can we say about $\int_{a}^{\infty} g(x) d x$?

If $\int_{a}^{\infty} f(x) d x$ diverges and $0<g(x) \leq f(x)$, what can we say about $\int_{a}^{\infty} g(x) d x$?
2. Suppose we have an improper integral whose integrand does not have an antiderivative that can be expressed in closed form. Use the results from problem 1 to create a strategy for proving convergence or divergence of such an improper integral.
3. Determine if the following families of improper integrals converge or diverge.
A. $\int_{a}^{\infty} \frac{1}{x^{p}} d x$
B. $\int_{0}^{a} \frac{1}{x^{p}} d x$
4. Make a list of helpful inequalities or strategies for finding larger/ smaller functions.

