\qquad

1. Perform the following calculations and simplify your final answer:
A. $(2+3 i)(1-2 i)$
B. $\frac{5}{3-2 i}$
C. $(1+i)^{20}$
2. Express $e^{(3+4 i) t}$ in the form $a+b i$.
3. Express $-\frac{5}{2}+\frac{5 \sqrt{3}}{2} i$ in the form $R e^{i \theta}$.

In problems 4 and 5 you will derive some formulas by computing something in two different ways, expressing each answer using Euler's formula, and then equating the results. The final step uses the fact that $a+b i=c+d i$ tells us that $a=c$ and $b=d$.
4. A. Use Euler's formula to rewrite $e^{i(2 \theta)}$.
B. Use $e^{i(2 \theta)}=\left(e^{i \theta}\right)^{2}$ to rewrite $e^{i(2 \theta)}$ in the form $a+b i$.
C. Set your answers to parts A and B equal to each other to derive two famous trig identities.
5. A. Use substitution to evaluate $\int e^{(a+b i) x} d x$. Rewrite your answer using Euler's formula.
B. Rewrite $\int e^{(a+b i) x} d x$ as the sum of two integrals using algebra.

Hint: $e^{(a+b i) x}=e^{a x} \cdot e^{b x i}$
C. Set your answers to parts A and B equal to each other to derive formulas 8 and 9 from the integral table.

