Approximating definite integrals:

1. The characteristic of $f(x)$ is given in the first column. For each rule, determine if the rule will produce an overestimate or underestimate of a definite integral.

$f(x)$	Left hand	Right Hand	Mid point	Trapezoid
Increasing and Concave up				
Decreasing and Concave up				
Increasing and Concave down				
Decreasing and Concave down				

2. Estimate the value of $\int_{0}^{4} e^{x^{2}} d x$ with $n=4$, for each of the given rules. Complete the table with exact values (do not use calculator program). Illustrate each rule in the space provided below.
a. Left Hand Rule

x					
$e^{x^{2}}$					

$$
\operatorname{Left}(4)=
$$

b. Right Hand Rule

x					
$e^{x^{2}}$					

$$
\operatorname{Right}(4)=
$$

c. Midpoint Rule

x					
$e^{x^{2}}$					

$$
\operatorname{Mid}(4)=
$$

d. Trapezoid Rule

x					
$e^{x^{2}}$					

