## ESTIMATION TECHNIQUES

1. Assume we are trying to estimate the value of  $\int_{A}^{B} f(x) dx$ . Illustrate the indicated rule with n = 2 in each diagram. Include a formula each estimate and a general formula for the rule.





2. Complete the table using the words "overestimate" or "underestimate".

|            | Shape of Graph |              |            |              |  |  |  |
|------------|----------------|--------------|------------|--------------|--|--|--|
| Rule       | Increasing     | Increasing   | Decreasing | Decreasing   |  |  |  |
|            | Concave Up     | Concave Down | Concave Up | Concave Down |  |  |  |
| Left hand  |                |              |            |              |  |  |  |
| Right hand |                |              |            |              |  |  |  |
| Midpoint   |                |              |            |              |  |  |  |
| Trapezoid  |                |              |            |              |  |  |  |

3. Suppose we estimate  $\int_{A}^{B} f(x) dx$  using our rules with the same number of subdivisions, *n* but only record three of our estimates: *Right*(*n*) = 1.8569 *Mid*(*n*) = 2.3481 *Trap*(*n*) = 2.1627. If f(x) is monotone and does not have any inflection points in the interval [*A*, *B*],

A. Is f(x) increasing or decreasing?

B. Is f(x) concave up or down?

C. Estimate the value of Left(n) and Simp(n)

4. The values in the tables below are for the estimates of  $\int_{0}^{2} e^{1.5x} dx$ .

| Estimates       | Left         | Right       | Midpoint     | Trapezoid    | Simpson     |
|-----------------|--------------|-------------|--------------|--------------|-------------|
| N=15            | 11.49370621  | 14.03844447 | 12.70250984  | 12.76607534  | 12.7236983  |
| N=75            | 12.47091390  | 12.97986156 | 12.72284308  | 12.72538773  | 12.7236913  |
| N=375           | 12.67286438  | 12.77465391 | 12.72365735  | 12.72375914  | 12.7236913  |
|                 |              |             |              |              |             |
| Errors          | Left         | Right       | Midpoint     | Trapezoid    | Simpson     |
| N=15            | -1.229985072 | 1.314753185 | -0.02118144  | 0.042384056  | 7.0603 E-06 |
| N=75            | -0.252777379 | 0.256170273 | -0.00084821  | 0.001696447  | 1.1309 E-08 |
| N=375           | -0.050826906 | 0.050962625 | -3.3930 E-05 | 6.78596 E-05 | 1.8208 E-11 |
|                 |              |             |              |              |             |
| Ratio of Errors | Left         | Right       | Midpoint     | Trapezoid    | Simpson     |
| N=15 to N=75    | 0.205512558  | 0.194842861 | 0.04004480   | 0.040025592  | 0.00160182  |
| N=75 to N=375   | 0.201073790  | 0.198940430 | 0.04000179   | 0.040001020  | 0.00160996  |

A. What is the relationship between the errors in the Midpoint and Trapezoid rules?

B. Find a pattern for the error using each rule (express as a formula).

C. What characteristic of f(x) determines the size of the errors in the Left and Right rules?

D. What characteristic of f(x) determines the size of the errors in the Midpoint and Trapezoid rules?

5. Suppose  $Mid(10) \approx 35.619$  and  $Mid(20) \approx 35.415$ . Find an estimate of the error when using Mid(10). Use this information to find a better estimate for the value of the corresponding definite integral.