Application to geometry:

Section 8.2

1. Consider the region bounded by the curve $y=e^{x}$, the x-axis, and the lines $x=-1$ and $x=1$. Find the volume of the following solids. Include sketches.
A. The solid obtained by rotating the region about the x-axis.
B. The solid obtained by rotating the region about the horizontal line $y=-5$.
2. Draw a sketch of the region in the $x y$-plane bounded by the curves $y=x^{2}$ and $y=5-x^{2}$. Find the volume of the solid whose base is the region and whose cross sections perpendicular to x-axis are squares with one side in the $x y$-plane.
3. Find the volume of the solid whose base is the region in the $x y$-plane bounded by the first arch of $y=\sin x$ and $y=-\sin x$ and whose cross sections perpendicular to x-axis are squares with one side in the $x y$-plane.
4. Find the exact volume of the solid obtained by revolving the region between the graph of $y=1-x^{2}$ and the x-axis about the line $y=5$. Give the sketch of the region in the $x y$-plane and also the picture of the solid.
5. The region bounded by $y=x^{3}, x=2$, and $y=-1$ is revolved about the line $y=-8$. Sketch the picture of the region and the solid. Find the volume.
6. Sketch a picture of the solid obtained by revolving the region bounded by the curve $y=x^{4}$ and the line $y=x$ about the y-axis. Also find the volume of the solid.
7. Consider the region bounded by the curve $y=\sqrt[3]{x}$, the x-axis, and the lines $x=0$, and $x=8$. Find the volume of the following solids:
a. The solid obtained by rotating this region about the x-axis.
b. The solid obtained by rotating this region about the horizontal line $y=-2$.
c. The solid obtained by rotating this region about the vertical line $x=8$.
d. The solid obtained by rotating this region about the y-axis
