Series and Improper Integrals

1. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ converges by comparing it to the improper integral $\int_{1}^{\infty} \frac{1}{x^{4}} d x$.
2. Show that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges by comparing it to the improper integral $\int_{1}^{\infty} \frac{1}{\sqrt{x}} d x$
3. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges for $0<p<1$.
4. Use the integral test to determine if the series converge.
A. $1+\frac{1}{5}+\frac{1}{9}+\frac{1}{13}+\cdots+\frac{1}{4 n-3}+\cdots$
B. $\frac{1}{2}+\frac{2}{5}+\frac{3}{10}+\frac{4}{17}+\cdots$
5. A. Does the series $\sum_{k=1}^{\infty} \frac{1}{k^{5}}$ converge? You must give a mathematically valid reason for your answer.
B. Does the series $\sum_{k=1}^{\infty} \frac{1+\cos (k)}{k^{5}}$ converge? You must give a mathematically valid reason for your answer.
