A particular disease can spread in one of four possible ways. Let *P* be the number of individuals infected at time *t*, $P(0) = P_o$, and the total population is 200. The four models are shown below.

Model A
$$\frac{dP}{dt} = k$$

Model B $\frac{dP}{dt} = kP$
Model C $\frac{dP}{dt} = k(200 - P)$
Model D $\frac{dP}{dt} = kP(200 - P)$

1. Match the model with its description:

_____ The rate at which the population is infected is proportional to the number of individuals infected.
_____ The rate at which the population is infected is constant.
_____ The rate at which the population is infected is proportional to the number of individuals infected and those that are not infected.
_____ The rate at which the population is infected is proportional to the number of individuals infected and those that are not infected.

2. Match the model with its general solution:

3. Match the model with its general solution:

$$P = 200 - (200 - P_o)e^{-kt} \qquad P = P_o e^{kt} \qquad P = \frac{200P_o}{P_o + (200 - P_o)e^{-kt}} \qquad P = kt + P_o$$