1. Find the Taylor series about 0 for the functions below. Include at least four nonzero terms.
A. $f(x)=\arcsin x$
B. $f(x)=\ln (3 x+1)$
C. $f(x)=\frac{\sin \left(x^{2}\right)}{x}$
D. $f(x)=e^{\sin x}$
2. Use an appropriate Taylor polynomial about 0 to find an approximation of $\int_{0}^{1} e^{-x^{2}} d x$. What can you do to find a better approximation?
3. A. Write the Taylor series about 0 for $\frac{1}{1-x}$.
B. Use the derivative of the series in part A to help you find the Taylor series about 0 for $\frac{x}{(1-x)^{2}}$.
C. Use your answer to part B to calculate the exact value of $\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}+\frac{5}{32}+\frac{6}{64}+\cdots$.
4. A. Find the Taylor polynomial of degree 3 approximating $f(x)=\sqrt{1-x}$ near 0 .
B. Use the polynomial in part A to give approximate values of $\sqrt{0.5}$ and $\sqrt{0.9}$.
C. Which approximation in part B is more accurate? Why?
5. A. Suppose all the derivatives of a function f exist at 0 . If the Taylor series for f about $x=0$ is given by $f(x)=5 x^{3}-7 x^{5}+9 x^{7}-\cdots$ find each of the following:
A. $f^{(4)}(0)$
B. $f^{(5)}(0)$
C. $f^{(7)}(0)$
6. A. If $f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-\pi)^{n}}{n^{2}}$ find $f^{\prime \prime \prime}(\pi)$.
B. If $\boldsymbol{f}(\boldsymbol{x})=\sum_{\boldsymbol{n}=1}^{\infty} \frac{(-1)^{\boldsymbol{n}}(\boldsymbol{x}-5)^{\boldsymbol{n}+1}}{n!}$ find $\boldsymbol{f}^{(7)}(5)$.
7. Find the exact value of the following sums:
A. $5-\frac{5(0.2)^{2}}{2!}+\frac{5(0.2)^{4}}{4!}-\frac{5(0.2)^{6}}{6!}+\frac{5(0.2)^{8}}{8!}-\cdots$
B. $(0.2)^{2}-\frac{(0.2) 4}{3!}+\frac{(0.2)^{6}}{5!}-\frac{(0.2)^{8}}{7!}+\cdots$
C. $5-\frac{5(0.2)^{2}}{1!}+\frac{5(0.2)^{4}}{2!}-\frac{5(0.2)^{6}}{3!}+\frac{5(0.2)^{8}}{4!}-\cdots$
D. $\frac{5(0.2)^{2}}{2}+\frac{5(0.2)^{4}}{2}+\frac{5(0.2)^{6}}{2}+\frac{5(0.2)^{8}}{2}-\cdots$
E. $5+5+\frac{5}{2!}+\frac{5}{3!}+\frac{5}{4!}+\cdots$
F. $1-5+\frac{25}{2!}-\frac{125}{3!}+\frac{625}{4!}+\cdots$
