Power Series

1. Find the radius and interval of convergence of $\sum_{k=0}^{\infty} \frac{2^{k}}{5^{k}} x^{k}$ using the steps below:
(i) $\boldsymbol{a}_{\boldsymbol{k}}=$
(ii) $\boldsymbol{a}_{\boldsymbol{k}+1}=$
(iii) Simplify $\frac{\left|\boldsymbol{a}_{\boldsymbol{k}+1}\right|}{\left|\boldsymbol{a}_{\boldsymbol{k}}\right|}=$
(iv) $\lim _{\boldsymbol{k} \rightarrow \infty} \frac{\left|\boldsymbol{a}_{\boldsymbol{k}+1}\right|}{\left|\boldsymbol{a}_{\boldsymbol{k}}\right|}=$
(v) Radius
(vi) Interval
2. Repeat the process shown in problem 1 for the following series:
A. $\sum_{k=0}^{\infty} \frac{1}{k+5}(x+2)^{k}$
B. $\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k+1)!} x^{2 k+1}$
C. $\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k!\cdot 2^{k}} x^{k}$
D. $\sum_{k=0}^{\infty} \frac{k!}{3^{k}}(x-5)^{k}$
3. Find the radius and the interval of convergence.
A. $1+2 x+\frac{4 x^{2}}{2}+\frac{8 x^{3}}{3}+\frac{16 x^{4}}{4}+\ldots$
B. $(x-2)-\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}-\frac{(x-2)^{4}}{4}+\cdots$
C. $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+3)^{n}}{5^{n} n^{5}}$
4. Suppose the power series $\sum_{n=0}^{\infty} C_{n}(x-2)^{n}$ converges for $x=4$ and diverges for $x=6$. Which of the following are true, false, or not possible to determine? Give reasons for your answers.
A. The power series converges for $x=7$.
B. The power series converges for $x=0.5$.
C. The power series diverges for $x=5$.
D. The power series diverges for $x=-3$.
E. The power series diverges for $x=1$.
