Name_

USE WELL-KNOWN SERIES TO ANSWER THE FOLLOWING.

1. Find
$$3 + \frac{27}{3!} + \frac{243}{5!} + \frac{2187}{7!} + \dots$$

2. Find $x^2 - \frac{x^4}{3!} + \frac{x^6}{5!} - \frac{x^8}{7!} + \dots$

3. Find
$$\sum_{k=1}^{\infty} \frac{(-1)^k x}{k}$$
.

4. Use series to find $f^{(5)}(0)$ and $f^{(6)}(0)$ for $f(x) = \frac{x}{1-x^2}$.

5. Use the values in the table below to find the limits. Show work to justify your answer. In other words, what does this have to do with Taylor polynomials?

A. $\lim_{x \to 2} \frac{f(x)}{h(x)}$ and B. $\lim_{x \to 2} \frac{f(x)}{g(x)}$.

	Function Value at	First Derivative	Second Derivative
	x = 2	Value at $x = 2$	Value at $x = 2$
f(x)	0	0	3
g(x)	0	22	5
h(x)	0	0	7

6. Use the series for $\ln(1-x)$ and differentiation to find a series for $\frac{1}{1-x}$.

7. Use the series for $\frac{1}{x^2+1}$ and integration to find a series for arctan x.

8. Find a series for $\int_0^x te^t dt$.

9. In this problem you will evaluate/ approximate $\int_{0}^{1} \sqrt{2-x^2} dx$ in four different ways.

- A. Use the first two nonzero terms of an appropriate series to get an approximation.
- B. Use Simpson's rule with n = 20 to get an approximation.
- C. Break up the region into a triangle and a part of a circle, then use geometry to get an exact value.
- D. Use the integration tables to get an exact value.