CREATE A NEW SERIES FROM AN OLD SERIES

1. Find the Taylor series for $g(x)=x^{2} e^{x}$ about $x=0$. Include the general term.
2. Find the Taylor series for $h(x)=\ln (4+8 x)$ about $x=0$. Include the interval of convergence.

USE A SERIES TO EVALUATE OR APPROXIMATE.
3. Find the exact value of $1+2+\frac{4}{2!}+\frac{8}{3!}+\frac{16}{4!}+\cdots$.
4. Solve for $x: \quad x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=1$
5. Find $f^{(5)}(0)$ and $f^{(6)}(0)$ for $f(x)=\arctan (x)$.
6. Evaluate the limit $\lim _{x \rightarrow \infty} \frac{x \cdot \arctan (x)}{e^{x^{2}}-1}$.
7. Estimate $\int_{0}^{1} e^{-x^{2}} d x$.

EXPAND A FUNCTION IN A SERIES

8. Expand $F=\frac{m g R^{2}}{(R+h)^{2}}$ in terms of $\frac{h}{R}$. Assume R is very large when compared to h.
9. Expand $Q=2 \pi \sigma\left(\sqrt{R^{2}+a^{2}}-R\right)$ in terms of $\frac{a}{R}$. Assume R is very large when compared to a.

COMPLEX NUMBERS

10. Find a formula for $e^{i t}$ where $i=\sqrt{-1}$ and use it to find $e^{\pi i}$ and $(1+i)^{20}$.
11. Express $\frac{1}{2}+\frac{\sqrt{3}}{2} i$ in the form $R e^{i \theta}$ and $e^{(3+4 i) t}$ in the form $a+b i$.
