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Chapter 1

Distributions

1.1 Properties of distributions

Consider the space C∞c (R) of complex test functions. These are complex func-
tions defined on the real line, infinitely differentiable and with compact support.
A distribution is a linear functional from this space to the complex numbers. It
must satisfy a certain continuity condition, but we shall ignore that. The value
of the distribution F on the test function φ is written 〈F, φ〉.

If f is a locally integrable function, then we may define a distribution

〈F, φ〉 =
∫ ∞

−∞
f(x)φ(x) dx. (1.1)

Thus many functions define distributions. This is why distributions are also
called generalized functions.

A sequence of distributions Fn is said to converge to a distribution F if for
each test function φ the numbers 〈Fn, φ〉 converge to the number 〈F, φ〉.

Example. The distribution δa is defined by

〈δa, φ〉 = φ(a). (1.2)

This is not given by a locally integrable function. However a distribution may
be written as a limit of functions. For instance, let ε > 0 and consider the
function

δε(x− a) =
1
π

ε

(x− a)2 + ε2
. (1.3)

The limit of the distributions defined by these locally integrable functions as
ε ↓ 0 is δa. For this reason the distribution is often written in the incorrect but
suggestive notation

〈δa, φ〉 =
∫ ∞

−∞
δ(x− a)φ(x) dx. (1.4)

Operations on distributions are defined by looking at the example of a dis-
tribution defined by a function and applying the integration by parts formula

7
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in that case. Thus, for instance, the derivative is defined by

〈F ′, φ〉 = −〈F, φ′〉. (1.5)

Example: Consider the locally integrable Heaviside function given byH(x) =
1 for x > 0, H(x) = 0 for x < 0. Then H ′ = δ. Here δ is given by

〈δ, φ〉 = φ(0). (1.6)

Example: Consider the locally integrable log function f(x) = log |x|. Then
f ′(x) = PV 1/x. Here the principal value PV 1/x is given by

〈PV
1
x
, φ〉 = lim

ε↓0

∫ ∞

−∞

x

x2 + ε2
φ(x) dx.. (1.7)

This can be seen by writing log |x| = limε log
√
x2 + ε2.

A distribution can be approximated by more than one sequence of functions.
For instance, for each a > 0 let loga(|x|) = log(|x|) for |x| ≥ a and loga(|x|) =
log(a) for |x| < a. Then loga(|x|) also approaches log(|x|) as a → 0. So its
derivative is another approximating sequence for PV 1/x. This says that

〈PV
1
x
, φ〉 = lim

a↓0

∫

|x|>a

1
x
φ(x) dx. (1.8)

We can use this sequence to compute the derivative of PV 1/x. We get

∫ ∞

−∞

(
d

dx
PV

1
x

)
φ(x) dx = − lim

a→0

∫

|x|>a

1
x
φ′(x) dx = lim

a→0

[∫

|x|>a

− 1
x2
φ(x) dx+

φ(a) + φ(−a)
a

]
.

(1.9)
But [φ(a) + φ(−a)− 2φ(0)]/a converges to zero, so this is

∫ ∞

−∞

(
d

dx
PV

1
x

)
φ(x) dx = lim

a→0

∫

|x|>a

− 1
x2

[φ(x)− φ(0)] dx. (1.10)

Another operator is multiplication of a distribution by a smooth function g
in C∞. This is defined in the obvious way by

〈g · F, φ〉 = 〈F, gφ〉. (1.11)

Distributions are not functions. They may not have values at points, and
in general nonlinear operations are not defined. For instance, the square of a
distribution is not always a well defined distribution.

Also, some algebraic operations involving distributions are quite tricky. Con-
sider, for instance, the associative law. Apply this to the three distributions
δ(x), x, and PV 1/x. Clearly the product δ(x) · x = 0. On the other hand, the
product x · PV 1/x = 1 is one. So if the associate law were to hold, we would
get

0 = 0 · PV
1
x

= (δ(x) · x) · PV
1
x

= δ(x) · (x · PV
1
x

) = δ(x) · 1 = δ(x). (1.12)
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1.2 Mapping distributions

A test function φ is naturally viewed as a covariant object, so the distribution
F is contravariant. A proper function is a function such that the inverse image
of each compact set is compact. It is natural to define the forward push of a
distribution F by a smooth proper function g by 〈g[F ], φ〉 = 〈F, φ◦g〉. Example:
If F is the distribution δ(x−3) and if u = g(x) = x2−4, then the forward push
is δ(u− 5). This is because

∫
δ(u− 5)φ(u) du =

∫
δ(x− 3)φ(x2 − 4) dx.

On the other hand, it is actually more common to think of a distribution
as being a covariant object, since a distribution is supposed to be a generalized
function. The backward pull of the distribution by a smooth function g is
defined in at least some circumstances by

〈F ◦ g, φ〉 = 〈F, g[φ]〉. (1.13)

Here

g[φ](u) =
∑

g(x)=u

φ(x)
|g′(x)| . (1.14)

Example. Let u = g(x) = x2 − 4, with a > 0. Then the backward pull of
δ(u) under g is δ(x2 − 4) = (1/4)(δ(x− 2) + δ(x+ 2)). This is because

g[φ](u) =
φ(
√
u2 + 4) + φ(−√u2 + 4)

2
√
u2 + 4

. (1.15)

So if F = δ, then

F ◦ g =
1
4
(δ2 + δ−2) (1.16)

Example: The backward pull is not always defined. To consider a dis-
tribution as a covariant object is a somewhat awkward act in general. Let
u = h(x) = x2. The backward pull of δ(u) by h is δ(x2), which is not defined.

Example: The general formula for the pull back of the delta function is

δ(g(x)) =
∑

g(a)=0

1
|g′(a)|δ(x− a). (1.17)

The most important distributions are δ, PV 1/x, 1/(x− i0), and 1/(x+ i0).
These are the limits of the functions δε(x), x/(x2 + ε2), 1/(x− iε), 1/(x+ iε) as
ε ↓ 0. The relations between these functions are given by

δε(x) =
1
π

ε

x2 + ε2
=

1
2πi

(
1

x− iε
− 1
x+ iε

)
. (1.18)

and
x

x2 + ε2
=

1
2

(
1

x− iε
+

1
x+ iε

)
. (1.19)
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1.3 Radon measures

A Radon measure is a positive distribution. That is, it is a linear functional
µ on C∞c (R) such that for each test function φ the condition φ ≥ 0 implies
that the value 〈µ, φ〉 ≥ 0. Every Radon measure extends uniquely by continuity
to a linear function on Cc(R), the space of continuous functions with compact
support. Each positive locally integrable function h defines a Radon measure by
integrating φ(x) times h(x) dx. Also, the point mass distributions δa are Radon
measures.

It is common to write the value of a Radon measure in the form

〈µ, φ〉 =
∫
φ(x) dµ(x). (1.20)

What is remarkable is that the theory of Lebesgue integration works for Radon
measures. That is, given a real function f ≥ 0 that is only required to be Borel
measurable, there is a natural definition of the integral such that

0 ≤
∫
f(x) dµ(x) ≤ +∞. (1.21)

Furthermore, if f is a complex Borel measurable function such that |f | has finite
integral, then the integral of f is defined and satisfies.

|
∫
f(x) dµ(x)| ≤

∫
|f(x)| dµ(x) < +∞. (1.22)

1.4 Approximate delta functions

It might seem that one could replace the notion of distribution by the notion of
a sequence of approximating functions. This is true in some sense, but the fact
is that many different sequences may approximate the same distribution. Here
is a result of that nature.

Theorem. Let δ1(u) ≥ 0 be a positive function with integral 1. For each ε > 0
define δε(x) = δ(x/ε)/ε. Then the functions δε converge to the δ distribution as
ε tends to zero.

The convergence takes place in the sense of distributions (smooth test func-
tions with compact support) or even in the sense of Radon measures (continuous
test functions with compact support). Notice that there are no continuity or
symmetry assumptions on the initial function.

The proof of this theorem is simple. Each δε has integral one. Consider a
bounded continuous function φ. Then

∫ ∞

−∞
δε(x)φ(x) dx =

∫ ∞

−∞
δ1(u)φ(εu) du. (1.23)

The dominated convergence theorem shows that this approaches the integral
∫ ∞

−∞
δ1(u)φ(0) du = φ(0). (1.24)
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Here is an even stronger result.
Theorem. For each ε > 0 let δε ≥ 0 be a positive function with integral 1.

Suppose that for each a > 0 that
∫

|x|>a

δε(x) dx→ 0 (1.25)

as ε → 0. Then the functions δε converge to the δ distribution as ε tends to
zero.

Here is a proof of this more general theorem. Let Hε(a) =
∫ a

0
δε(x) dx. Then

for each a < 0 we have Hε(a) → 0, and for each a > 0 we have 1−Hε(a) → 0.
In other words, for each a 6= 0 we have Hε(a) → H(a) as ε → 0. Since the
functions Hε are uniformly bounded, it follows from the dominated convergence
theorem that Hε → H in the sense of distributions. It follows by differentiation
that δε → δ in the sense of distributions.

1.5 Problems

If F and G are distributions, and if at least one of them has compact support,
then their convolution F ∗G is defined by

〈F ∗G,φ〉 = 〈FxGy, φ(x+ y)〉.
This product is commutative. It is also associative if at least two of the three
factors have compact support.

1. If F and G are given by locally integrable functions f and g, and at
least one has compact support, then F ∗G is given by a locally integrable
function

(f ∗ g)(z) =
∫ ∞

−∞
f(x)g(z − x) dx =

∫ ∞

−∞
f(z − y)g(y) dy.

2. If G is given by a test function g, then F ∗ g is given by a smooth function

(F ∗ g)(z) = 〈Fx, g(z − x)〉.

3. Calculate the convolution 1 ∗ δ′.
4. Calculate the convolution δ′ ∗H, where H is the Heaviside function.

5. Calculate the convolution (1 ∗ δ′) ∗H and also calculate the convolution
1∗ (δ′ ∗H). What does this say about the associative law for convolution?

6. Let L be a constant coefficient linear differential operator. Let u be a
distribution that is a fundamental solution, that is, let Lu = δ. Let G be
a distribution with compact support. Show that the convolution F = u∗G
satisfies the equation LF = G. Hint: Write 〈LF, φ〉 = 〈F,L†φ〉, where L†

is adjoint to L.
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7. Take L = −d2/dx2. Is there a fundamental solution that has support in
a bounded interval? Is there a fundamental solution that has support in
a semi-infinite interval?

1.6 Tempered distributions

Let d/dx be the operator of differentiation, and let x be the operator of mul-
tiplication by the coordinate x. The space S of rapidly decreasing smooth test
functions consists of the functions φ in L2 such that every finite product of the
operators d/dx and x applied to φ is also in L2. The advantage of this definition
is that the space S is clearly invariant under Fourier transformation.

A tempered distribution is a linear functional on S satisfying the appro-
priate continuity property. Every tempered distribution restricts to define a
distribution. So tempered distributions are more special.

The advantage of tempered distributions is that one can define Fourier trans-
forms F̂ of tempered distributions F . The definition is

〈F̂ , φ〉 = 〈F, φ̂〉. (1.26)

Here φ̂ is the Fourier transform of φ.
Here are some Fourier transforms for functions. The first two are easy. They

are ∫ ∞

−∞
e−ikx 1

x− iε
dx = 2πieεkH(−k) (1.27)

and ∫ ∞

−∞
e−ikx 1

x+ iε
dx = −2πie−εkH(k). (1.28)

Subtract these and divide by 2πi. This gives
∫ ∞

−∞
e−ikxδε(x) dx = e−ε|k|. (1.29)

Instead, add these and divide by 2. This gives
∫ ∞

−∞
e−ikx x

x2 + ε2
dx = −πie−ε|k|sign(k). (1.30)

The corresponding Fourier transforms for distributions are

F [1/(x− i0)] = 2πiH(−k) (1.31)

and
F [1/(x+ i0)] = −2πiH(k). (1.32)

Also,
F [δ(x)] = 1 (1.33)
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and

F [PV
1
x

] = −πisign(k). (1.34)

Example: Here is a more complicated calculation. The derivative of PV 1/x
is the distribution

d

dx
PV

1
x

= − 1
x2

+ cδ(x), (1.35)

where c is the infinite constant

c =
∫ ∞

−∞

1
x2

dx. (1.36)

This makes rigorous sense if interprets it as

∫ ∞

−∞

(
d

dx
PV

1
x

)
φ(x) dx = lim

a→0

∫

|x|>a

− 1
x2

[φ(x)− φ(0)] dx. (1.37)

One can get an intuitive picture of this result by graphing the approximating
functions. The key formula is

d

dx

x

x2 + ε2
= − x2

(x2 + ε2)2
+ cε

2ε3

π(x2 + ε2)2
, (1.38)

where cε = π/(2ε). This is an approximation to −1/x2 plus a big constant times
an approximation to the delta function.

The Fourier transform of the derivative is obtained by multiplying the Fourier
transform of PV 1/x by ik. Thus the Fourier transform of −1/x2 + cδ(x) is ik
times −πisign(k) which is π|k|.

This example is interesting, because it looks at first glance that the derivative
of PV 1/x should be −1/x2, which is negative definite. But the correct answer
for the derivative is −1/x2 + cδ(x), which is actually positive definite. And in
fact its Fourier transform is positive.

For each of these formula there is a corresponding inverse Fourier transform.
For, instance, the inverse Fourier transform of 1 is

δ(x) =
∫ ∞

∞
eikx dk

2π
=

∫ ∞

0

cos(kx)
dk

2π
. (1.39)

Of course such an equation is interpreted by integrating both sides with a test
function.

Another formula of the same type is gotten by taking the inverse Fourier
transform of −πisign(k). This is

PV
1
x

= −πi
∫ ∞

−∞
eikxsign(k)

dk

2π
=

∫ ∞

0

sin(kx) dk. (1.40)
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1.7 Poisson equation

We begin the study of fundamental solutions of partial differential equations.
These are solutions of the equation Lu = δ, where L is the differential operator,
and δ is a point source.

Let us start with the equation in one space dimension:
(
− d2

dx2
+m2

)
u = δ(x). (1.41)

This is an equilibrium equation that balances a source with losses due to diffu-
sion and to dissipation (when m > 0). Fourier transform. This gives

(
k2 +m2

)
û(k) = 1. (1.42)

The solution is
û(k) =

1
k2 +m2

. (1.43)

There is no problem of division by zero. The inverse Fourier transform is

u(x) =
1

2m
e−m|x|. (1.44)

This is the only solution that is a tempered distribution. (The solutions of the
homogeneous equation all grow exponentially.)

What happens when m = 0? This is more subtle. The equation is

− d2

dx2
u = δ(x). (1.45)

Fourier transform. This gives

k2û(k) = 1. (1.46)

Now there is a real question about division by zero. Furthermore, the homo-
geneous equation has solutions that are tempered distributions, namely linear
combinations of δ(k) and δ′(k). The final result is that the inhomogeneous equa-
tion does have a tempered distribution solution, but it needs careful definition.
The solution is

û(k) =
1
k2

+∞δ(k). (1.47)

This may be thought of as the derivative of −PV 1/k. The inverse Fourier
transform of PV 1/k is (1/2)isign(x). So the inverse Fourier transform of
−d/dkPV 1/k is −(−ix)(1/2)isign(x) = −(1/2)|x|. Thus

u(x) = −1
2
|x| (1.48)

is a solution of the inhomogeneous equation. The solutions of the homogeneous
equation are linear combinations of 1 and x. None of these solutions are a
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good description of diffusive equilibrium. In fact, in one dimension there is no
diffusive equilibrium.

The next case that is simple to compute and of practical importance is the
equation in dimension 3. This is

(−∇2 +m2
)
u = δ(x). (1.49)

This is an equilibrium equation that balances a source with losses due to diffu-
sion and to dissipation (when m > 0). Fourier transform. This gives

(
k2 +m2

)
û(k) = 1. (1.50)

The solution is
û(k) =

1
k2 +m2

. (1.51)

The inverse Fourier transform in the three dimension case may be computed by
going to polar coordinates. It is

u(x) =
1

4π|x|e
−m|x|. (1.52)

What happens when m = 0? The situation is very different in three dimen-
sions. The equation is

∇2u = δ(x). (1.53)

Fourier transform. This gives

k2û(k) = 1. (1.54)

The inhomogeneous equation has a solution

û(k) =
1
k2
. (1.55)

But now this is a locally integrable function. It defines a tempered distribution
without any regularization. Thus

u(x) =
1

4π|x| (1.56)

is a solution of the inhomogeneous equation. In three dimensions there is dif-
fusive equilibrium. There is so much room that the effect of the source can be
completely compensated by diffusion alone.

1.8 Diffusion equation

The diffusion equation or heat equation is
(
∂

∂t
− 1

2
σ2 ∂

2

∂x2

)
u = δ(x)δ(t). (1.57)
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It says that the time rate of change is entirely due to diffusion. Fourier trans-
form. We get

(iω +
1
2
σ2k2)û(k, ω) = 1. (1.58)

This has solution

û(k, ω) =
1

iω + 1
2σ

2k2
=

1
i

1
ω − i 12σ

2k2
. (1.59)

Here the only division by zero is when both ω and k are zero. But this is not
so serious, because it is clear how to regularize. We can use the fact that the
inverse Fourier transform of 1/(ω − iε) with ε > 0 is iH(t)e−εt. So we have

û(k, t) = H(t)e−
σ2tk2

2 . (1.60)

This is a Gaussian, so the fundamental solution is

u(x, t) = H(t)
1√

2πσ2t
e−

x2

2σ2t . (1.61)

1.9 Wave equation

We will look for the solution of the wave equation with a point source at time
zero that lies in the forward light cone. The wave equation in 1 + 1 dimensions
is (

∂2

∂t2
− c2

∂2

∂x2

)
u = δ(x)δ(t). (1.62)

Fourier transform. We get

(−ω2 + c2k2)û(k, ω) = 1. (1.63)

This has solution

û(k, ω) = − 1
(ω − i0)2 − c2k2

. (1.64)

The division by zero is serious, but it is possible to regularize. The choice
of regularization is not the only possible one, but we shall see that it is the
convention that gives propagation into the future. We can write this also as

û(k, ω) = − 1
2c|k|

(
1

ω − i0− c|k| −
1

ω − i0 + c|k|
)
. (1.65)

We can use the fact that the inverse Fourier transform of 1/(ω − i0) is iH(t).
So we have

û(k, t) = − 1
2c|k| iH(t)

[
eic|k|t − e−ic|k|t

]
=

1
c|k| sin(c|k|t)H(t). (1.66)
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It is easy to check that this is the Fourier transform of

u(x, t) =
1
2c

[H(x+ ct)−H(x− ct)]H(t). (1.67)

The wave equation in 3 + 1 dimensions is
(
∂2

∂t2
− c2∇2

)
u = δ(x)δ(t). (1.68)

Fourier transform. We get

(−ω2 + c2k2)û(k, ω) = 1. (1.69)

This has solution
û(k, ω) = − 1

(ω − i0)2 − c2k2
. (1.70)

Again we can write this as

û(k, ω) = − 1
2c|k|

(
1

ω − i0− c|k| −
1

ω − i0 + c|k|
)
. (1.71)

Thus we have again

û(k, t) = − 1
2c|k| iH(t)

[
eic|k|t − e−ic|k|t

]
=

1
c|k| sin(c|k|t)H(t). (1.72)

However the difference is that the k variable is three dimensional. It is easy to
check that this is the Fourier transform of

u(x, t) =
1

4πc|x|δ(|x| − ct)H(t). (1.73)

This is a beautiful formula. It represents an expanding sphere of influence, going
into the future. Inside the sphere it is dark. The solution has an even more
beautiful expression that exhibits the symmetry:

u(x, t) =
1

2πc
δ(x2 − c2t2)H(t). (1.74)

1.10 Homogeneous solutions of the wave equa-
tion

The polynomial ω2 − k2 vanishes on an entire cone, so it is not surprising that
the wave equation has a number of interesting homogeneous solutions. The
most important ones are

û(k, t) =
1
c|k| sin(c|k|t) (1.75)
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and its derivative
v̂(k, t) = cos(c|k|t). (1.76)

These are the solutions that are used in constructing solutions of the initial
value problem.

It is interesting to see what these solutions look like in the frequency repre-
sentation. The result is

û(k, ω) = −πi 1
c|k| [δ(ω− c|k|)− δ(ω+ c|k|)] = −2πiδ(ω2 − c2k2)sign(ω) (1.77)

and

v̂(k, ω) = iωû(k, ω) = π[δ(ω − c|k|) + δ(ω + c|k|)] = 2π|ω|δ(ω2 − c2k2). (1.78)

1.11 Problems

1. Show that 1

x
1
3

is a locally integrable function and thus defines a distribu-
tion. Show that its distribution derivative is

d

dx

1
x

1
3

= −1
3

1
x

4
3

+ cδ(x), (1.79)

where
c =

1
3

∫ ∞

−∞

1
x

4
3
dx (1.80)

Hint: To make this rigorous, consider x/(x2 + ε2)
2
3 .

2. Show that 1

|x| 13
is a locally integrable function and thus defines a distri-

bution. Show that its distribution derivative is

d

dx

1
x

1
3

= −1
3

1
x

4
3
sign(x). (1.81)

The right hand side is not locally integrable. Explain the definition of the
right hand side as a distribution. Hint: To make this rigorous, consider
1/(x2 + ε2)

1
6 .

3. Discuss the contrast between the results in the last two problems. It
may help to draw some graphs of the functions that approximate these
distributions.

4. Let m > 0. Use Fourier transforms to find a tempered distribution u that
is the fundamental solution of the equation

− d2

dx2
u+m2u = δ(x). (1.82)

Is this a unique tempered distribution solution? Explain.
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5. Let m > 0. Consider Euclidian space of dimension n = 3. Use Fourier
transforms to find a tempered distribution u that is the fundamental so-
lution of the equation

−∇2u+m2u = δ(x). (1.83)

1.12 Answers to first two problems

1. The function 1

x
1
3

is locally integrable, while its pointwise derivative − 1
3

1

x
4
3

is not. But we do have

d

dx

x

(x2 + ε2)
2
3

= −1
3

x2

(x2 + ε2)
5
3

+
ε2

(x2 + ε2)
5
3
. (1.84)

Let

cε =
∫ ∞

−∞

1
3

x2

(x2 + ε2)
5
3
dx (1.85)

which is easily seen to be proportional to 1/ε
1
3 . From the fundamental

theory of calculus ∫ ∞

−∞

ε2

(x2 + ε2)
5
3
dx = cε. (1.86)

Write

δε(x) =
1
cε

ε2

(x2 + ε2)
5
3
. (1.87)

Then δε(x) → δ(x) in the sense of distributions. Furthermore,
∫ ∞

−∞

d

dx

1
x

1
3
φ(x) dx = lim

ε→0

∫ ∞

−∞
[−1

3
x2

(x2 + ε2)
5
3

+ cεδε(x)]φ(x) dx. (1.88)

Since for φ smooth enough
∫
cεδε(x)[φ(x)− φ(0)] dx→ 0, (1.89)

this may be written in the simple form
∫ ∞

−∞

d

dx

1
x

1
3
φ(x) dx =

∫ ∞

−∞
−1

3
1
x

4
3
[φ(x)− φ(0)] dx. (1.90)

Notice that the integrand is integrable for each test function φ.

2. The function 1

|x| 13
is locally integrable, while its pointwise derivative− 1

3
1

x
4
3
sign(x)

is not. We have
d

dx

1
(x2 + ε2)

1
6

= −1
3

x

(x2 + ε2)
7
6
. (1.91)
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Since this derivative is an odd function, we have
∫ ∞

−∞

d

dx

1
|x| 13 φ(x) dx = lim

ε→0

∫ ∞

−∞
−1

3
x

(x2 + ε2)
7
6
[φ(x)− φ(0)] dx. (1.92)

We can write this as
∫ ∞

−∞

d

dx

1
|x| 13 φ(x) dx =

∫ ∞

−∞
−1

3
1
x

4
3
sign(x)[φ(x)− φ(0)] dx. (1.93)

Again the integrand is integrable.



Chapter 2

Bounded Operators

2.1 Introduction

This chapter deals with bounded linear operators. These are bounded linear
transformations of a Hilbert space into itself. In fact, the chapter treats four
classes of operators: finite rank, Hilbert-Schmidt, compact, and bounded. Ev-
ery finite rank operator is Hilbert-Schmidt. Every Hilbert-Schmidt operator is
compact. Every compact operator is bounded.

We shall see in the next chapter that it is also valuable to look at an even
broader class of operators, those that are closed and densely defined. Every
bounded operator (everywhere defined) is closed and densely defined. However
the present chapter treats only bounded operators.

2.2 Bounded linear operators

LetH be a Hilbert space (a vector space with an inner product that is a complete
metric space). A linear transformation K : H → H is said to be bounded if
it maps bounded sets into bounded sets. This is equivalent to there being a
constant M with

‖Ku‖ ≤M‖u‖. (2.1)

Let M2 be the least such M . This is called uniform norm of K and is written
‖K‖∞ or simply ‖K‖ when the context makes this clear. [The subscript in M2

is supposed to remind us that we are dealing with Hilbert spaces like L2. The
subscript in ‖K‖∞, on the other hand, tells that we are looking at a least upper
bound.]

If K and L are bounded operators, their sum K + L and product KL are
bounded. Furthermore, we have ‖K + L‖∞ ≤ ‖K‖∞ + ‖L‖∞ and ‖KL‖∞ ≤
‖K‖∞‖L‖∞.

A bounded operator K always has an adjoint K∗ that is a bounded operator.

21
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It is the unique operator with the property that

(u,K∗v) = (Ku, v) (2.2)

for all u, v in H. Furthermore K∗∗ = K, and ‖K∗‖∞ = ‖K‖∞. For products
we have (KL)∗ = L∗K∗, in the opposite order.

It is also possible to define the adjoint of an operator from one Hilbert space
to another. Here is a special case. Let g be a vector in the Hilbert space H.
Then g defines a linear transformation from C to H by sending z to the vector
zg. The adjoint is a linear transformation from H to C, denoted by g∗. It is the
transformation that sends v to (g, v), so g∗v = (g, v). The adjointness relation
is z̄ g∗v = (zg, v) which is just z̄(g, v) = (zg, v).

Let f be another vector. Define the operator K from H to H by Ku =
f(g, u), that is, K = fg∗. Then the adjoint of K is K∗ = gf∗.

Example: Hilbert-Schmidt integral operators. Let

(Kf)(x) =
∫
k(x, y)f(y) dy. (2.3)

with k in L2, that is,

‖k‖22 =
∫ ∫

|k(x, y)|2 dx dy <∞. (2.4)

Then K is bounded with norm ‖K‖∞ ≤ ‖k‖2.
Proof: Fix x. Apply the Schwarz inequality to the integral over y in the def-

inition of the operator. This gives that |(Kf)(x)|2 ≤ ∫ |k(x, y)|2 dy ∫ |f(y)|2 dy.
Now integrate over x.

Example: Interpolation integral operators. Let K be an integral operator
such that

M1 = sup
y

∫
|k(x, y)| dx <∞ (2.5)

and
M∞ = sup

x

∫
|k(x, y)| dy <∞. (2.6)

(Here we choose to think of k(x, y) as a function of x and y, not as a Schwartz
distribution like δ(x− y).) Let 1/p+ 1/q = 1. Then for each p with 1 ≤ p ≤ ∞
the norm Mp of K as an operator on Lp is bounded by Mp ≤ M

1
p

1 M
1
q∞. In

particular as an operator on L2 the norm M2 = ‖K‖∞ of K is bounded by

M2 ≤
√
M1M∞. (2.7)

The reason for the name interpolation operator (which is not standard) is that
the bound interpolates for all p from the extreme cases p = 1 (where the bound
is M1) and p = ∞ (where the bound is M∞).

Proof: Write

|(Kf)(x)| ≤
∫
|k(x, y)||f(y)| dy =

∫
|k(x, y)| 1q · |k(x, y)| 1p |f(y)| dy. (2.8)
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Apply the Hölder inequality to the integral. This gives

|(Kf)(x)| ≤
(∫

|k(x, y)| dy
) 1

q
(∫

|k(x, y)||f(y)|p dy
) 1

p

≤M
1
q∞

(∫
|k(x, y)||f(y)|p dy

) 1
p

.

(2.9)
It follows that

∫
|(Kf)(x)|p dx ≤M

p
q∞

∫ ∫
|k(x, y)||f(y)|p dy dx ≤M

p
q∞M1

∫
|f(y)|p dy.

(2.10)
Take the pth root to get the bound

(∫
|(Kf)(x)|p dx

) 1
p

≤M
1
q∞M

1
p

1

(∫
|f(y)|p dy

) 1
p

. (2.11)

For a bounded operator K the set of points µ such that (µI − K)−1 is
a bounded operator is called the resolvent set of K. The complement of the
resolvent set is called the spectrum of K. When one is only interested in values
of µ 6= 0 it is common to define λ = 1/µ and write

µ(µI −K)−1 = (I − λK)−1 (2.12)

While one must be alert to which convention is being employed, this should be
recognized as a trivial relabeling.

Theorem. If complex number µ satisfies ‖K‖∞ < |µ|, then µ is in the
resolvent set of K.

Proof: This is the Neumann series expansion

(µI −K)−1 =
1
µ

∞∑

j=0

1
µj
Kj . (2.13)

The jth term has norm ‖Kj‖∞/|µ|j ≤ (‖K‖∞/|µ|)j . This is the jth term of a
convergent geometric series.

Theorem. If for some n ≥ 1 the complex number µ satisfies ‖Kn‖∞ < |µ|n,
then µ is in the resolvent set of K.

This is the Neumann series again. But now we only require the estimate
for the nth power of the operator. Write j = an + b, where 0 ≤ b < n. Then
‖Kj‖∞/|µ|j is bounded by (‖K‖∞/|µ|)b((‖Kn‖∞/|µ|n)a. So this is the sum of
n convergent geometric series, one for each value of b between 0 and n− 1.

The spectral radius of an operator is the largest value of |µ|, where µ is in the
spectrum. The estimate of this theorem gives an upper bound on the spectral
radius.

This is a remarkable result, since it has no analog for scalars. However for a
matrix the norm of a power can be considerably smaller than the corresponding
power of the norm, so this result can be quite useful. The most spectacular
application is to Volterra integral operators.



24 CHAPTER 2. BOUNDED OPERATORS

Example: Volterra integral operators. Let H = L2(0, 1) and

(Kf)(x) =
∫ x

0

k(x, y)f(y) dy. (2.14)

Suppose that |k(x, y)| ≤ C for 0 ≤ y ≤ x ≤ 1 and k(x, y) = 0 for 0 ≤ x < y ≤ 1.
Then

‖Kn‖∞ ≤ Cn

(n− 1)!
. (2.15)

As a consequence every complex number µ 6= 0 is in the resolvent set of K.
Proof: Each power Kn with n ≥ 1 is also a Volterra integral operator. We

claim that it has kernel kn(x, y) with

|kn(x, y)| ≤ Cn

(n− 1)!
(x− y)n−1. (2.16)

for 0 ≤ y ≤ x ≤ 1 and zero otherwise. This follows by induction.
Since |kn(x, y)| ≤ Cn/(n − 1)!, the Hilbert-Schmidt norm of K is also

bounded by Cn/(n− 1)!. However this goes to zero faster than every power. So
the Neumann series converges.

The norm of a bounded operator can always be found by calculating the norm
of a self-adjoint bounded operator. In fact, ‖K‖2∞ = ‖K∗K‖∞. Furthermore,
the norm of a self-adjoint operator is its spectral radius. This shows that to
calculate the norm of a bounded operator K exactly, one needs only to calculate
the spectral radius of K∗K and take the square root. Unfortunately, this can
be a difficult problem. This is why it is good to have other ways of estimating
the norm.

2.3 Compact operators

Let H be a Hilbert space. A subset S is totally bounded if for every ε > 0
there is a cover of S by a finite number N of ε balls. A totally bounded set is
bounded.

Thus for instance, if H is finite dimensional with dimension n and S is a cube
of side L, then N ≈ (L/ε)n. This number N is finite, though it increases with
ε. One expects a cube or a ball to be totally bounded only in finite dimensional
situations.

However the situation is different for a rectangular shaped region in infinite
dimensions. Say that the sides are L1, L2, L3, . . . , Lk, . . . and that these decrease
to zero. Consider ε > 0. Pick k so large that Lk+1, Lk+1, . . . are all less than ε.
Then N ≈ (L1/ε)(L2/ε) · · · (Lk/ε). This can increase very rapidly with ε. But
such a region that is fat only in finitely many dimensions and increasingly thin
in all the others is totally bounded.

A linear transformationK : H → H is said to be compact if it maps bounded
sets into totally bounded sets. (One can take the bounded set to be the unit
ball.) A compact operator is bounded.
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If K and L are compact operators, then so is their sum K + L. If K is
compact and L is bounded, then KL and LK are compact.

If the self-adjoint operator K∗K is compact, then K is compact.
Proof: Let ε > 0. Then there are u1, . . . , uk in the unit ball such that for

each u in the unit ball there is a j with ‖K∗K(u − uj)‖ < ε/2. But this says
that

‖K(u−uj)‖ = (K(u−uj),K(u−uj)) = ((u−uj),K∗K(u−uj)) ≤ ‖u−uj‖ ‖K∗K(u−uj)‖ < ε.
(2.17)

The adjoint K∗ of a compact operator K is a compact operator.
Proof: Say that K is compact. Then since K∗ is bounded, it follows that

KK∗ is compact. It follows from the last result that K∗ is compact.
Approximation theorem. If Kn is a sequence of compact operators, and K

is a bounded operator, and if ‖Kn − K‖∞ → 0 and n → ∞, then K is also
compact.

The proof is a classical ε/3 argument. Let ε > 0. Choose n so large that
‖K−Kn‖∞ < ε

3 . SinceKn is compact, there are finitely many vectors u1, . . . , uk

in the unit ball such that every vectorKnu with u in the unit ball is within ε/3 of
some Knuj . Consider an arbitrary u in the unit ball and pick the corresponding
uj . Since

Ku−Kuj = (K −Kn)u+ (Knu−Knuj) + (Kn −K)uj , (2.18)

it follows that

‖Ku−Kuj‖ ≤ ‖(K−Kn)u‖+‖Knu−Knuj‖+‖(Kn−K)uj‖ ≤ ε

3
+
ε

3
+
ε

3
= ε.

(2.19)
This shows that the image of the unit ball under K is totally bounded.

Spectral properties of compact operators. LetK be a compact operator. The
only non-zero points in the spectrum of K are eigenvalues of finite multiplicity.
The only possible accumulation point of the spectrum is 0.

Notice that there is no general claim that the eigenvectors of K form a basis
for the Hilbert space. The example of a Volterra integral operator provides a
counterexample: The only point in the spectrum is zero.

Let K be a compact operator. We want to consider equations of the form

µu = f +Ku, (2.20)

where µ is a parameter. If µ = 0, then this is an equation of the first kind. If
µ 6= 0, then this is an equation of the second kind. Very often an equation of
the second kind is written u = f1 + λKu, where λ = 1/µ, and where f1 = λf .

The condition for a unique solution of an equation of the first kind is the
existence of the inverse K−1, and the solution is u = −K−1f . Thus the issue
for an equation of the first kind is whether µ = 0 is not an eigenvalue of K. If
µ = 0 is not an eigenvalue, the operator K−1 will be typically be an unbounded
operator that is only defined on a linear subspace of the Hilbert space.
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The condition for a unique solution of an equation of the second kind is the
existence of the inverse (µI − K)−1 for a particular value of µ 6= 0, and the
solution is u = (µI − K)−1f . The issue for an equation of the second kind
is whether µ 6= 0 is not an eigenvalue of K. In this case, if µ 6= 0 is not an
eigenvalue, then (µI − K)−1 will be a bounded operator. Thus equations of
the second kind are much nicer. This is because compact operators have much
better spectral properties away from zero.

Spectral theorem for compact self-adjoint operators. Let K be a compact
self-adjoint operator. Then there is an orthonormal basis uj of eigenvectors
of K. The eigenvalues µj of K are real. Each non-zero eigenvalue is of finite
multiplicity. The only possible accumulation point of the eigenvalues is zero.
The operator K has the representation

Kf =
∑

j

µjuj(uj , f). (2.21)

In abbreviated form this is

K =
∑

j

µjuju
∗
j . (2.22)

There is yet another way of writing the spectral theorem for compact op-
erators. Define the unitary operator U from H to `2 by (Uf)j = (uj , f). Its
inverse is the unitary operator form `2 to H given by (U∗c) =

∑
cjuj . Let M

be the diagonal operator from `2 to `2 defined by multiplication by µj . Then

K = U∗MU. (2.23)

The norm of a compact operator can always be found by calculating the norm
of a self-adjoint compact operator. In fact, ‖K‖2∞ = ‖K∗K‖∞. Furthermore,
the norm of a compact self-adjoint operator is its spectral radius, which in this
case is the largest value of |µ|, where µ is an eigenvalue. Unfortunately, this can
be a difficult computation.

Singular value decomposition for compact operators. Let K be a compact
operator. Then there is an orthonormal family uj and an orthonormal family
wj and a sequence of numbers χj ≥ 0 (singular values of K) approaching zero
such that the operator K has the representation

Kf =
∑

j

χjwj(uj , f). (2.24)

In abbreviated form this is

K =
∑

j

χjwju
∗
j . (2.25)

Sketch of proof: The operator K∗K is self-adjoint with positive eigenvalues
χ2

j . We can write

K∗Kf =
∑

j

χ2
juj(uj , f). (2.26)
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Then √
K∗Kf =

∑

j

χjuj(uj , f). (2.27)

Since ‖Kf‖ = ‖√K∗Kf‖ for each f , we can writeK = V
√
K∗K, where ‖V g‖ =

‖g‖ for all g =
√
K∗Kf in the range of

√
K∗K. This is the well-known polar

decomposition. Then
Kf =

∑

j

χjwj(uj , f), (2.28)

where wj = V uj .
There is another way of writing the singular value decomposition of K. Let√

K∗K = U∗DU be the spectral representation of
√
K∗K, where D is diagonal

with entries χj ≥ 0. Then K = V U∗DU = WDU .
It follows from the approximation theorem and from the singular value de-

composition that an operator is compact if and only if it is a norm limit of a
sequence of finite rank operators.

Notice that this theorem gives a fairly clear picture of what a compact op-
erator acting on L2 looks like. It is an integral operator with kernel

k(x, y) =
∑

j

χjwj(x)uj(y), (2.29)

where the χj → 0. Of course this representation may be difficult to find in
practice. What happens in the case of a Hilbert-Schmidt integral operator is
special: the χj go to zero sufficiently rapidly that

∑
j |χj |2 <∞.

2.4 Hilbert-Schmidt operators

Let H be a Hilbert space. For a positive bounded self-adjoint operator B the
trace is defined by trB =

∑
j(ej , Bej), where the ej form an orthonormal ba-

sis. A bounded linear operator K : H → H is said to be Hilbert-Schmidt if
tr(K∗K) <∞. The Hilbert-Schmidt norm is ‖K‖2 =

√
tr(K∗K).

Theorem. If K is a Hilbert-Schmidt integral operator with (Kf)(x) =∫
k(x, y)f(y) dy then

‖K‖22 =
∫ ∫

|k(x, y)|2 dx dy. (2.30)

Proof: Let {e1, e2, ...} be an orthonormal basis for H. We can always expand
a vector in this basis via

u =
∑

j

ej(ej , u). (2.31)

(Remember the convention adopted here that inner products are linear in the
second variable, conjugate linear in the first variable.) Write

Kf =
∑

i

ei

∑

j

(ei,Kej)(ej , f). (2.32)
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The matrix elements (ei,Kej) satisfy
∑

i

∑

j

|(ei,Kej)|2 =
∑

j

∑

i

(Kej , ei)(ei,Kej) =
∑

j

||Kej ||2 =
∑

j

(ej ,K
∗Kej) = tr(K∗K).

(2.33)
So the kernel of the integral operator K is

k(x, y) =
∑

i

∑

j

(ei,Kej)ei(x)ej(y). (2.34)

This sum is convergent in L2(dxdy).
A Hilbert-Schmidt operator is a bounded operator. It is always true that

‖K‖∞ ≤ ‖K‖2.
Theorem. A Hilbert-Schmidt operator is compact.
Proof: Let K be a Hilbert-Schmidt operator. Then K is given by a square-

summable matrix. So K may be approximated by a sequence of finite-rank
operators Kn such that ‖Kn − K‖2 → 0. In particular, ‖Kn − K‖∞ → 0.
Since each Kn is compact, it follows from the approximation theorem that K is
compact.

If K and L are Hilbert-Schmidt operators, their sum K + L is a Hilbert-
Schmidt operator and ‖K +L‖2 ≤ ‖K‖2 + ‖L‖2. If K is a Hilbert-Schmidt op-
erator and L is a bounded operator, then the products KL and LK are Hilbert-
Schmidt. Furthermore, ‖KL‖2 ≤ ‖K‖2‖L‖∞ and ‖LK‖2 ≤ ‖L‖∞‖K‖2.

The adjoint of a Hilbert-Schmidt operator is a Hilbert-Schmidt operator.
Furthermore, ‖K∗‖2 = ‖K‖2.

Notice that the Hilbert-Schmidt norm of a bounded operator is defined in
terms of a self-adjoint operator. In fact, ‖K‖2 is the square root of the trace
of the self-adjoint operator K∗K, and the trace is the sum of the eigenvalues.
However we do not need to calculate the eigenvalues, since, as we have seen,
there are much easier ways to calculate the trace.

2.5 Problems

1. Let H = L2 be the Hilbert space of square integrable functions on the
line. Create an example of a Hilbert-Schmidt operator that is not an
interpolation operator.

2. Let H = L2 be the Hilbert space of square integrable functions on the
line. Create an example of an interpolation operator that is not a Hilbert-
Schmidt operator. Make the example so that the operator is not compact.

3. Find an example of a compact bounded operator onH = L2 that is neither
a Hilbert-Schmidt or an interpolation operator.

4. Find an example of a bounded operator on H = L2 that is neither a
Hilbert-Schmidt nor an interpolation operator, and that is also not a com-
pact operator.
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5. Let H be a Hilbert space. Give an example of a Hilbert-Schmidt operator
for which the spectral radius is equal to the uniform norm.

6. Let H be a Hilbert space. Give an example of a Hilbert-Schmidt operator
for which the spectral radius is very different from the uniform norm.

7. Let H be a Hilbert space. Is it possible for a Hilbert-Schmidt operator
to have its Hilbert-Schmidt norm equal to its uniform norm? Describe all
possible such situations.

2.6 Finite rank operators

Let H be a Hilbert space. A bounded linear transformation K : H → H is said
to be finite rank if its range is finite dimensional. The dimension of the range
of K is called the rank of K. A finite rank operator may be represented in the
form

Kf =
∑

j

zj(uj , f), (2.35)

where the sum is finite. In a more abbreviated notation we could write

K =
∑

j

zju
∗
j . (2.36)

Thus in L2 this is an integral operator with kernel

k(x, y) =
∑

j

zj(x)uj(y). (2.37)

If K and L are finite rank operators, then so is their sum K + L. If K is
finite rank and L is bounded, then KL and LK are finite rank.

The adjoint K∗ of a finite rank operator K is finite rank. The two operators
have the same rank.

Every finite rank operator is Hilbert-Schmidt and hence compact. If K is a
compact operator, then there exists a sequence of finite rank operators Kn such
that ‖Kn −K‖∞ → 0 as n→∞.

If K is a finite rank operator and µ 6= 0, then the calculation of (µI −K)−1

or of (I − λK)−1 may be reduced to a finite-dimensional matrix problem in
the finite dimensional space R(K). This is because K leaves R(K) invariant.
Therefore if µ = 1/λ is not an eigenvalue of K acting in R(K), then there is an
inverse (I − λK)−1 acting in R(K). However this gives a corresponding inverse
in the original Hilbert space, by the formula

(I − λK)−1 = I + (I − λK)−1λK. (2.38)

Explictly, to solve
u = λKu+ f, (2.39)
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write
u = (I − λK)−1f = f + (I − λK)−1λKf. (2.40)

To solve this, let w be the second term on the right hand side, so that u = f+w.
Then (I − λK)w = λKf . Write w =

∑
j ajzj . Then

∑

j

ajzj − λ
∑

j

zj(uj ,
∑

r

arzr) = λ
∑

j

zj(uj , f). (2.41)

Thus
aj − λ

∑
r

(uj , zr)ar = (uj , f). (2.42)

This is a matrix equation that may be solved whenever 1/λ is not an eigenvalue
of the matrix with entries (uj , zr).

2.7 Problems

It may help to recall that the problem of inverting I − λK is the same as the
problem of showing that µ = 1/λ is not in the spectrum of K.

1. Consider functions in L2(−∞,∞). Consider the integral equation

f(x)− λ

∫ ∞

−∞
cos(

√
x2 + y4)e−|x|−|y|f(y) dy = g(x).

It is claimed that there exists r > 0 such that for every complex number λ
with |λ| < r the equation has a unique solution. Prove or disprove. Inter-
pret this as a statement about the spectrum of a certain linear operator.

2. Consider functions in L2(−∞,∞). Consider the integral equation

f(x)− λ

∫ ∞

−∞
cos(

√
x2 + y4)e−|x|−|y|f(y) dy = g(x).

It is claimed that there exists R <∞ such that for every complex number
λ with |λ| > R the equation does not have a unique solution. Prove or
disprove. Interpret this as a statement about the spectrum of a certain
linear operator.

3. Consider functions in L2(−∞,∞). Consider the integral equation

f(x)− λ

∫ ∞

−∞
e−|x|−|y|f(y) dy = g(x).

Find all complex numbers λ for which this equation has a unique solution.
Find the solution. Interpret this as a statement about the spectrum of a
certain linear operator.
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4. Consider functions in L2(0, 1). Consider the integral equation

f(x)− λ

∫ x

0

f(y) dy = g(x).

Find all complex numbers λ for which this equation has a unique solution.
Find the solution. Interpret this as a statement about the spectrum of a
certain linear operator. Hint: Differentiate. Solve a first order equation
with a boundary condition.

5. Consider functions in L2(0, 1). Consider the integral equation

f(x)− λ

[∫ x

0

y(1− x)f(y) dy +
∫ 1

x

x(1− y)f(y) dy
]

= g(x).

Find all complex numbers λ for which this equation has a unique solution.
Interpret this as a statement about the spectrum of a certain linear oper-
ator. Hint: The integral operator K has eigenfunctions sin(nπx). Verify
this directly. This should also determine the eigenvalues.
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Chapter 3

Densely Defined Closed
Operators

3.1 Introduction

This chapter deals primarily with densely defined closed operators. Each ev-
erywhere defined bounded operator is in particular a densely defined closed
operator.

If L is a densely defined closed operator, then so is its adjoint L∗. Further-
more, L∗∗ = L. If both L and L∗ have trivial null spaces, then both L−1 and
L∗−1 are densely defined closed operators.

A complex number λ is in the resolvent set of a densely defined closed op-
erator L if (L− λI)−1 is an everywhere defined bounded operator. A complex
number λ is in the spectrum of L if it is not in the resolvent set. A complex
number λ is in the spectrum of L if and only if λ̄ is in the spectrum of the
adjoint L∗.

It is common to divide the spectrum into three disjoint subsets: point spec-
trum, continuous spectrum, and residual spectrum. (This terminology is mis-
leading, in that it treats limits of point spectrum as continuous spectrum.) In
this treatment we divide the spectrum into four disjoint subsets: standard point
spectrum, pseudo-continuous spectrum, anomalous point spectrum, and resid-
ual spectrum. The adjoint operation maps the first two kind of spectra into
themselves, but it reverses the latter two.

3.2 Subspaces

Let H be a Hilbert space. Let M be a vector subspace of H. The closure M̄
is also a vector subspace of H. The subspace M is said to be closed if M =
M̄ . The orthogonal complement M⊥ is a closed subspace of H. Furthermore,
(M̄)⊥ = M⊥. Finally M⊥⊥ = M̄ . The nicest subspaces are closed subspaces.

33
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For a closed subspace M we always have M⊥⊥ = M .
A subspace M is dense in H if M̄ = H. This is equivalent to the condition

M⊥ = {0}.

3.3 Graphs

Let H be a Hilbert space. The direct sum H ⊕ H with itself consists of all
ordered pairs [u, v], where u, v are each vectors in H. The inner product of
[u, v] with [u′, v′] is

([u, v], [u′, v′]) = (u, u′) + (v, v′). (3.1)

A graph is a linear subspace of H ⊕ H. If we have two graphs L1 and L2

and if L1 ⊂ L2, then we say that L1 is a restriction of L2 or L2 is an extension
of L1.

If L is a graph, then its domain D(L) is the set of all u in H such that there
exists a v with [u, v] in L. Its range R(L) is the set of all v in H such that there
exists u with [u, v] in L.

If L is a graph, then its null space N(L) is the set of all u in H such that
[u, 0] is in L.

If L is a graph, then the inverse graph L−1 consists of all [v, u] such that
[u, v] is in L.

We say that a graph L is an operator if [0, v] in L implies v = 0. It is easy
to see that this is equivalent to saying that N(L−1) = {0} is the zero subspace.
When L is an operator and [u, v] is in L, then we write Lu = v. We shall explore
the properties of operators in the next section.

Write L̄ for the closure of L. We say L is closed if L = L̄.
If L is a graph, then the adjoint graph L∗ consists of the pairs [w, z] such

that for all [u, v] in L we have (z, u) = (w, v).
If L is a graph, then the adjoint graph L∗ is always closed. Furthermore,

the adjoint of its closure L̄ is the same as the adjoint of L.
Remark: One way to think of the adjoint graph is to define the negative

inverse −L−1 of a graph L to consist of all the ordered pairs [v,−u] with [u, v]
in L. Then the adjoint L∗ is the orthogonal complement in H ⊕ H of −L−1.
That is, the pair [z, w] in the graph L∗ is orthogonal to each [v,−u] with [u, v]
in the graph of L. This says that ([z, w], [v,−u]) = (z, u) − (w, v) = 0 for all
such [u, v]. [This says to take the graph with negative reciprocal slope, and then
take the perpendicular graph to that.]

Another way to think of this is to define the anti-symmetric form ω([z, w], [u, v]) =
(z, u) − (w, v). Then the adjoint A∗ consists of the orthogonal complement of
A with respect to ω.

Theorem. If L is a graph, then L∗∗ = L̄.
Perhaps the nicest general class of graphs consists of the closed graphs L.

For such a graph the adjoint L∗ is a graph, and L∗∗ = L.
It is not hard to check that L∗−1 = L−1∗.
Theorem. N(L∗) = R(L)⊥.
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Corollary. R(L) = N(L∗)⊥.
This corollary is very important in the theory of linear equations. Let L be

a linear operator. Suppose that R(L) is a closed subspace of H. Then in this
special case the corollary says that R(L) = N(L∗)⊥. Thus a linear equation
Lu = g has a solution u if and only if g is orthogonal to all solutions v of
L∗v = 0. This is called the Fredholm alternative.

3.4 Operators

If L is a graph, then L is an operator if [0, v] in L implies v = 0. It is easy to
see that L is an operator precisely when N(L−1) = {0} is the zero subspace.
When L is an operator and [u, v] is in L, then we write Lu = v.

Corollary. L is densely defined if and only if L∗ is an operator.
Proof: Apply the last theorem of the previous section to L−1. This gives

N(L∗−1) = D(L)⊥.
Corollary. L̄ is an operator if and only if L∗ is densely defined.
Proof: Apply the previous corollary to L∗ and use L∗∗ = L̄.
An operator L is said to be closable if L̄ is also an operator. For a densely

defined closable operator the adjoint L∗ is a densely defined closed operator,
and L∗∗ = L̄. Furthermore, the definition of the adjoint is that w is in the
domain of L∗ and L∗w = z if and only if for all u in the domain of L we have
(z, u) = (w,Lu), that is,

(L∗w, u) = (w,Lu). (3.2)

Perhaps the nicest general class of operators consists of the densely defined
closed operators L. For such an operator the adjoint L∗ is a densely defined
closed operator, and L∗∗ = L.

3.5 The spectrum

Theorem. (Closed graph theorem) Let H be a Hilbert space. Let L be a closed
operator with domain D(L) = H. Then L is a bounded operator. (The converse
is obvious.)

0. Let L be a closed operator. We say that λ is in the resolvent set of L if
N(L−λI) = {0} and R(L−λI) = H. In that case (L−λI)−1 is a closed operator
with domain D((L− λI)−1) = H. By the closed graph theorem, (L− λI)−1 is
a bounded operator.

We shall usually refer to (L− λI)−1 as the resolvent of L. However in some
contexts it is convenient to use instead (λI − L)−1, which is of course just the
negative. There is no great distinction between these two possible definitions of
resolvent. However it is important to be alert to which one is being used.

1. Let L be a closed operator. We say that λ is in the standard point
spectrum of L if N(L− λI) 6= {0} and R(L− λI)⊥ 6= {0}.
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2. Let L be a closed operator. We say that λ is in the anomalous point
spectrum of L if N(L − λI) 6= {0} and R(L − λI)⊥ = {0} (that is, R(L − λI)
is dense in H).

3. Let L be a closed operator. We say that λ is in the pseudo-continuous
spectrum of L if N(L−λI) = {0} and R(L−λI)⊥ = {0} (so R(L−λI) is dense
in H) but R(L − λI) 6= H. In that case (L − λI)−1 is a closed operator with
dense domain D((L− λI)−1) not equal to H.

4. Let L be a closed operator. We say that λ is in the residual spectrum
of L if N(L − λI) = {0} and R(L − λI)⊥ 6= {0}. In that case (L − λI)−1 is a
closed operator with a domain that is not dense.

Theorem. Let L be a densely defined closed operator and let L∗ be its adjoint
operator. Then:

0. The number λ is in the resolvent set of L if and only if λ̄ is in the resolvent
set of L∗.

1. The number λ is in the standard point spectrum of L if and only if λ̄ is
in the standard point spectrum of L∗.

2. The number λ is in the anomalous point spectrum of L if and only if λ̄ is
in the residual spectrum of L∗.

3. λ is in the pseudo-continuous spectrum of L if and only if λ̄ is in the
pseudo-continuous spectrum of L∗.

4. λ is in the residual spectrum of L if and only if λ̄ is in the anomalous
point spectrum of L∗.

For finite dimensional vector spaces only cases 0 and 1 can occur.
Summary: Let L be a closed, densely defined operator. The complex number

λ is in the point spectrum of L is equivalent to λ being an eigenvalue of L.
Similarly, λ in the pseudo-continuous spectrum of L is equivalent to (L−λI)−1

being a densely defined, closed, but unbounded operator. Finally, λ in the
residual spectrum of L is equivalent to (L− λI)−1 being a closed operator that
is not densely defined.

3.6 Spectra of inverse operators

Consider a closed, densely defined operator with an inverse L−1 that is also a
closed, densely defined operator. Let λ 6= 0. Then λ is in the resolvent set of L
if and only if 1/λ is in the resolvent set of L−1. In fact, we have the identity

(
I − λ−1L

)−1
+

(
I − λL−1

)−1
= I. (3.3)

One very important situation is when K = L−1 is a compact operator.
Then we know that all non-zero elements µ of the spectrum of K = L−1 are
eigenvalues of finite multiplicity, with zero as their only possible accumulation
point. It follows that all elements λ = 1/µ of the spectrum of L are eigenvalues
of finite multiplicity, with infinity as their only possible accumulation point.
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3.7 Problems

If K is a bounded everywhere defined operator, then in particular K is a closed
densely defined operator.

If K is a closed densely defined operator, and if both K and K∗ have trivial
nullspaces, then L = K−1 is also a closed densely defined operator.

1. Let K = L−1 be as above. Let λ 6= 0 and let µ = 1/λ. Find a formula
relating the resolvent (L− λ)−1 to the resolvent (K − µ)−1.

2. Consider functions in L2(0, 1). Consider the integral operator K given by

(Kf)(x) =
∫ x

0

f(y) dy.

Show that L = K−1 exists and is closed and densely defined. Describe
the domain of L. Be explicit about boundary conditions. Describe how L
acts on the elements of this domain. Show that L∗ = K∗−1 is closed and
densely defined. Describe the domain of L∗. Describe how L∗ acts on the
elements of this domain. Hint: Differentiate.

3. In the preceding problem, find the spectrum of L. Also, find the resol-
vent (L − λ)−1 of L. Hint: Solve a first order linear ordinary differential
equation.

4. Consider functions in L2(0, 1). Consider the integral operator K given by

(Kf)(x) =
[∫ x

0

y(1− x)f(y) dy +
∫ 1

x

x(1− y)f(y) dy
]
.

Show that L = K−1 exists and is closed and densely defined. Describe
the domain of L. Be explicit about boundary conditions. Describe how L
acts on the elements of this domain. Hint: Differentiate twice.

5. In the preceding problem, find the spectrum of L. Find the resolvent
(L − λ)−1 of L. Hint: Use sin(

√
λx) and sin(

√
λ(1 − x)) as a basis for

the solutions of a homogeneous second order linear ordinary differential
equation. Solve the inhomogeneous equation by variation of parameters.

6. Let K be a compact operator. Suppose that K and K∗ have trivial null-
spaces, so that L = K−1 is a closed densely defined operator. Prove
that the spectrum of L = K−1 consists of isolated eigenvalues of finite
multiplicity. To what extent does this result apply to the examples in the
previous problems?

7. Let K be a compact self-adjoint operator. Suppose that K has trivial
null-space, so that L = K−1 is a self-adjoint operator. Prove that there
exists an orthogonal basis consisting of eigenvectors of L. To what extent
does this result apply to the examples in the previous problems?
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3.8 Self-adjoint operators

It is difficult to do algebraic operations with closed, densely defined operators,
because their domains may differ. It is always true that (zL)∗ = z̄L∗. If K is
bounded everywhere defined, then (L+K)∗ = L∗+K∗ and (K+L)∗ = K∗+L∗.
Furthermore, if K is bounded everywhere defined, then (KL)∗ = L∗K∗.

An operator A is self-adjoint if A = A∗. A self-adjoint operator is automat-
ically closed and densely defined. (Every adjoint A∗ is automatically closed. If
A∗ is an operator, then A is densely defined.)

If a self-adjoint operator has trivial null space, then its inverse is also a
self-adjoint operator.

If L is a closed, densely defined operator, then L∗L is defined on the domain
consisting of all u in D(L) such that Lu is in D(L∗). It is not obvious that this
is closed and densely defined, much less that it is self-adjoint. However this is
all a consequence of the following theorem.

Theorem. If L is a closed and densely defined operator, then L∗L is a self-
adjoint operator.

Proof: If L is a closed and densely defined operator, then L∗ is also a closed
and densely defined operator. Furthermore, LL∗ is an operator with LL∗ ⊂
(LL∗)∗.

The Hilbert space H ⊕ H may be written as the direct sum of the two
closed graphs −L−1 and L∗ Therefore an arbitrary [0, h] for h in H may be
written as the sum [0, h] = [−Lf, f ] + [g, L∗g]. This says that 0 = −Lf + g
and h = f +L∗g. As a consequence h = f +L∗Lf . Furthermore, by properties
of projections we have ‖Lf‖2 + ‖f‖2 ≤ ‖h‖2. We have shown that for each
h we can solve (I + L∗L)f = h and that ‖f‖2 ≤ ‖h‖2. Thus (I + L∗L)−1 is
everywhere defined and is a bounded operator with norm bounded by one.

Since L∗L ⊂ (L∗L)∗, we have (I + L∗L)−1 ⊂ (I + L∗L)−1∗. It follows that
(I + L∗L)−1 = (I + L∗L)−1∗ is a self-adjoint operator. The conclusion follows.

3.9 First order differential operators with a bounded
interval: point spectrum

In this section we shall see examples of operators with no spectrum at all.
However we shall also see a very pretty and useful example of an operator with
standard point spectrum. This operator is the one behind the theory of Fourier
series.

Example 1A: This example is one where the correct number of boundary
conditions are imposed. In the case of a first order differential operator this
number is one. Let H be the Hilbert space L2(0, 1). Let L0 be the operator
d/dx acting on functions of the form f(x) =

∫ x

0
g(y) dy where g is in H. The

value of L0 on such a function is g(x). Notice that functions in the domain of L0

automatically satisfy the boundary condition f(0) = 0. This is an example of a
closed operator. The reason is that (L−1

0 g)(x) =
∫ x

0
g(y) dy. This is a bounded

operator defined on the entire Hilbert space. So L−1
0 and L0 are both closed.
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The adjoint of the inverse is given by (L−1∗
0 )h(x) =

∫ 1

x
h(y) dy. It follows

that L∗0 is the operator −L1, where L1 is given by d/dx acting on functions
of the form f(x) = − ∫ 1

x
g(y) dy where g is in H. The value of L1 on such a

function is g(x). Notice that functions in the domain of L1 automatically satisfy
the boundary condition f(1) = 0.

The operators L0 and L1 each have one boundary condition. They are
negative adjoints of each other. They each have a spectral theory, but it is
extremely pathological. For instance, the resolvent of L0 is given by

((L0 − λI)−1g)(x) =
∫ x

0

eλ(x−y)g(y) dy.

So there are no points at all in the spectrum of L0. It is in some sense located
all at infinity.

To see this, consider the operator L−1
0 . This operator has spectrum consist-

ing of the point zero. All the spectral information is hidden at this one point.
This is, by the way, an example of pseudo-continuous spectrum.

This is one important though somewhat technical point. The domain of L0

consists precisely of the functions in the range of K0 = L−1
0 . In the example

where K0 is the integration operator, this is all functions of the form

u(x) =
∫ x

0

f(y)dy, (3.4)

where f is in L2(0, 1). These functions u need not be C1. They belong to a larger
class of functions that are indefinite integrals of L2 functions. Such functions
are continuous, but they may have slope discontinuities. The functions u of
course satisfy the boundary condition u(0) = 0. The action of L0 on a function
u is given by L0u = u′, where the derivative exists except possible on a set of
measure zero. However L2 functions such as f are defined only up to sets of
measure zero, so this is not a problem.

Now for a really picky question: If u is also regarded as an L2 function, then
it is also defined only up to sets of measure zero. So what does u(0) mean?
After all, the set consisting of 0 alone is of measure zero. The answer is that
the general indefinite integral is a function of the form

u(x) =
∫ x

0

f(y)dy + C. (3.5)

Among all L2 functions given by such an integral expression, there is a subclass
of those for which C = 0. These are the ones satisfying the boundary condition
u(0) = 0. There is another subclass for which C = − ∫ 1

0
f(y)dy. These are the

ones satisfying u(1) = 0.
A densely defined operator L is said to be self-adjoint if L = L∗. Similarly,

L is said to be skew-adjoint if L = −L∗.
Example 1B: Here is another example with the correct number of boundary

conditions. Let H be the Hilbert space L2(0, 1). Let L= be the operator d/dx
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acting on functions of the form f(x) =
∫ x

0
g(y) dy + C where g is in H and∫ 1

0
g(y) dy = 0. The value of L= on such a function is g(x). Notice that

functions in the domain of L= automatically satisfy the boundary condition
f(0) = f(1). The operator L= is skew-adjoint.

The operator L= has periodic boundary conditions. Since it is skew-adjoint,
it has an extraordinarily nice spectral theory. The resolvent is

((L= − λI)−1g)(x) =
1

1− eλ

∫ x

0

eλ(x−y)g(y) dy − 1
1− e−λ

∫ 1

x

e−λ(y−x)g(y) dy.

The spectrum consists of the numbers 2πin. These are all point spectrum. The
corresponding eigenvectors form a basis that gives the Fourier series expansion
of an arbitrary periodic function with period one.

A densely defined operator L is said to be Hermitian if L ⊂ L∗. This is
simply the algebraic property that

(Lu,w) = (u, Lw)

for all u,w in D(L). Similarly, L is said to be skew-Hermitian if L ⊂ −L∗.
Example 2: The following example illustrates what goes wrong when one

imposes the wrong number of boundary conditions. Let H be the Hilbert space
L2(0, 1). Let L01 be the operator d/dx acting on functions of the form f(x) =∫ x

0
g(y) dy where g is in H and

∫ 1

0
g(y) dy = 0. The value of L01 on such a

function is g(x). Notice that functions in the domain of L01 automatically
satisfy the boundary conditions f(0) = 0 and f(1) = 0. The adjoint of L01

is the operator −L, where L is given by d/dx acting on functions of the form∫ x

0
g(y) dy+C, where g is in H. The value of L on such a function is g(x). Notice

that functions in the domain of L need not satisfy any boundary conditions.
From this we see that L01 is skew-Hermitian.

The operator L is d/dx. It has too few boundary conditions. The opera-
tor L01 has a boundary condition at 0 and at 1. This is too many boundary
conditions. Each of these operators is the negative of the adjoint of the other.
The spectrum of L consists of the entire complex plane, and it is all point spec-
trum. The spectrum of L01 also consists of the entire complex plane, and it is
all residual spectrum.

Remark: The operators L0 and L1 have L01 ⊂ L0 ⊂ L and with L01 ⊂ L1 ⊂
L. Furthermore, the operator L= has L01 ⊂ L= ⊂ L. Thus there are various
correct choices of boundary conditions, but they may have different spectral
properties.

3.10 Spectral projection and reduced resolvent

Consider a closed densely defined operator L. In this section we shall assume
that the eigenvectors of L span the entire Hilbert space. Consider also an
isolated eigenvalue λn. The spectral projection corresponding to λn is a (not



3.11. GENERATING SECOND-ORDER SELF-ADJOINT OPERATORS 41

necessarily orthogonal) projection onto the corresponding eigenspace. It is given
in terms of the resolvent by

Pn = lim
λ→λn

(λn − λ)(L− λI)−1. (3.6)

This is the negative of the residue of the resolvent at λ1. The reason this works
is that L =

∑
m λmPm and consequently

(L− λI)−1 =
∑
m

1
λm − λ

Pm, (3.7)

at least in the case under consideration, when the eigenvectors span the entire
Hilbert space.

The reduced resolvent corresponding to λn is defined as the operator that
inverts (L− λnI) in the range of (I − Pn) and is zero in the range of Pn. It is
a solution of the equations

SnPn = PnSn = 0 (3.8)

and
(L− λnI)Sn = 1− Pn (3.9)

It may be expressed in terms of the resolvent by

Sn = lim
λ→λn

(L− λI)−1(1− Pn). (3.10)

When the eigenvectors span this is

Sn =
∑

m 6=n

1
λm − λn

Pm. (3.11)

Example: Take the skew-adjoint operator L= = d/dx acting in L2(0, 1)
with periodic boundary conditions. The spectral projection corresponding to
eigenvalue 2πin is the self-adjoint operator

(Png)(x) =
∫ 1

0

exp(2πin(x− y))g(y) dy. (3.12)

The reduced resolvent corresponding to eigenvalue 0 is the skew-adjoint operator

(S0g)(x) =
∫ x

0

(
1
2
− x+ y)g(y) dy +

∫ 1

x

(−1
2
− x+ y)g(y) dy. (3.13)

3.11 Generating second-order self-adjoint oper-
ators

This section exploits the theorem that says that if L is an arbitrary closed
densely defined operator, then L∗L is a self-adjoint operator. Remember that
L∗∗ = L, so LL∗ is also a self-adjoint operator.
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It would be easy to conclude that first order differential operators such as L01

and its adjoint L are of no interest for spectral theory. This is not the case. From
the general theorem LL01 and L01L are self-adjoint second-order differential
operators. These, as we shall see, have a nice spectral theory. The operator
LL01 is the operator −d2/dx2 with Dirichlet boundary conditions u(0) = 0 and
u(1) = 0. The operator L01L is the operator −d2/dx2 with Neumann boundary
conditions u′(0) = 0 and u′(1) = 0. It is amusing to work out other self-adjoint
second order differential operators that may be generated from the first order
differential operators of the preceding sections.

3.12 First order differential operators with a semi-
infinite interval: residual spectrum

In this example we shall see examples of operators with anomalous point spec-
trum and residual spectrum. These operators underly the theory of the Laplace
transform.

Example: Let H be the Hilbert space L2(0,∞). Let L0 be the operator d/dx
acting on functions f in H of the form f(x) =

∫ x

0
g(y) dy where g is in H. The

value of L0 on such a function is g(x). Notice that functions in the domain of
L0 automatically satisfy the boundary condition f(0) = 0.

If <λ < 0, then we can find always find a solution of the equation (L0 −
λI)f = g. This solution is

f(x) =
∫ x

0

eλ(x−y)g(y) dy. (3.14)

This equation defines the bounded operator (L0−λI)−1 that sends g into f , at
least when <λ < 0. Notice that if <λ > 0, then the formula gives a result in L2

only if g is orthogonal to e−λ̄x. Thus <λ > 0 corresponds to residual spectrum.
Again let H be the Hilbert space L2(0,∞). Let L be the operator d/dx with

no boundary condition. If <λ > 0, then we can find always find a solution of
the equation (L− λI)f = g. This solution is

f(x) = −
∫ ∞

x

eλ(x−y)g(y) dy. (3.15)

This equation defines the bounded operator (L− λI)−1 that sends g into f , at
least when <λ > 0. On the other hand, if <λ < 0, then we have point spectrum.

The relation between these two operators is L∗0 = −L. This corresponds to
the fact that (L0 − λI)−1∗ = (−L− λ̄)−1, which is easy to check directly.

3.13 First order differential operators with an
infinite interval: continuous spectrum

In this section we shall see an example of an operator with continuous spectrum.
This is the example that underlies the theory of the Fourier transform.
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Example: Let H be the Hilbert space L2(−∞,∞). Let L be the operator
d/dx acting on functions f in H with derivatives f ′ in H.

If <λ < 0, then we can find always find a solution of the equation (L−λI)f =
g. This solution is

f(x) =
∫ x

−∞
eλ(x−y)g(y) dy. (3.16)

This equation defines the bounded operator (L− λI)−1 that sends g into f , at
least when <λ < 0. If <λ > 0, then we can find always find a solution of the
equation (L− λI)f = g. This solution is

f(x) = −
∫ ∞

x

eλ(x−y)g(y) dy. (3.17)

This equation defines the bounded operator (L− λI)−1 that sends g into f , at
least when <λ > 0.

The operator L is skew-adjoint, that is, L∗ = −L. This corresponds to the
fact that (L− λI)−1∗ = (−L− λ̄)−1, which is easy to check directly.

3.14 Problems

1. Let H = L2(0, 1). Let L = −id/dx with periodic boundary conditions.
Find an explicit formula for (λ−L)−1g. Hint: Solve the first order ordinary
differential equation (λ − L)f = g with the boundary condition f(0) =
f(1).

2. Find the eigenvalues and eigenvectors of L. For each eigenvalue λn, find
the residue Pn of (λ− L)−1 at λn.

3. Find the explicit form of the formula g =
∑

n Png.

4. Let H = L2(−∞,∞). Let L = −id/dx. Let k be real and ε > 0. Find
an explicit formula for (L− k − iε)−1g. Also, find an explicit formula for
(L− k + iε)−1g. Find the explicit form of the expression

δε(L− k)g =
1

2πi
[(L− k − iε)−1 − (L− k + iε)−1]g.

5. Find the explicit form of the formula

g =
∫ ∞

−∞
δε(L− k)g dk.

6. Let ε→ 0. Find the explicit form of the formula

g =
∫ ∞

−∞
δ(L− k)g dk.
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3.15 A pathological example

Consider H = L2(R) and fix g in H. Define K as the integral operator
with kernel k(x, y) = g(x)δ(y). Consider the domain D(K) to be the set
of all continuous functions in H. Then

(Ku)(x) = g(x)f(0). (3.18)

This K is densely defined but not closed. It has a closure K̄, but this is
not an operator. To see this, let un → u and Kun = un(0)g → v. Then
the pair [u, v] is in the graph K̄. But we can take un → 0 in the Hilbert
space sense, yet with each un(0) = C. So this gives the pair [0, Cg] in the
graph K̄. This is certainly not an operator!

Consider the adjointK∗. This is the integral operator with kernel δ(x)g(y).
That is,

(K∗w)(x) = δ(x)
∫ ∞

−∞
g(y)w(y) dy. (3.19)

Since ∫ ∞

−∞
δ(x)2 dx = +∞, (3.20)

the δ(x) is not in L2. Hence the domain of K∗ consists of all w with
(g, w) = 0, and K∗ = 0 on this domain. This is an operator that is closed
but not densely defined. According to the general theory, its adjoint is
K∗∗ = K̄, which is not an operator.



Chapter 4

Normal operators

4.1 Spectrum of a normal operator

Theorem (von Neumann) Let L be a densely defined closed operator. Then L∗L
and LL∗ are each self-adjoint operators.

A densely defined closed operator is said to be normal if L∗L = LL∗.
There are three particularly important classes of normal operators.
1. A self-adjoint operator is an operator L with L∗ = L.
2. A skew-adjoint operator is an operator L with L∗ = −L.
3. A unitary operator is an operator L with L∗ = L−1. A unitary operator

is bounded.
For a self-adjoint operator the spectrum is on the real axis. For a skew-

adjoint operator the spectrum is on the imaginary axis. For a unitary operator
the spectrum is on the unit circle.

For normal operators there is a different classification of spectrum. Let L be
a normal operator acting in a Hilbert space H. The point spectrum consists of
the eigenvalues of L. The corresponding eigenvectors span a closed subspace Mp

of the Hilbert space. The spectrum of L in this space consists of either what we
have previously called standard point spectrum or of what we have previously
called pseudo-continuous spectrum. This kind of pseudo-continuous spectrum
is not really continuous at all, since it consists of limits of point spectrum.

Let Mc be the orthogonal complement in H of Mp. Then the spectrum
of L restricted to Mc is called the continuous spectrum of L. In our previ-
ous classification the spectrum of L in this space would be pseudo-continuous
spectrum.

With this classification for normal operators the point spectrum and contin-
uous spectrum can overlap. But they really have nothing to do with each other,
since they take place in orthogonal subspaces.

Spectral theorem for compact normal operators. Let K be a compact normal
operator. (This includes the cases of self-adjoint operators and skew-adjoint
operators.) Then K has an orthogonal basis of eigenvectors. The non-zero

45
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eigenvalues have finite multiplicity. The only possible accumulation point of
eigenvalues is zero.

Spectral theorem for normal operators with compact resolvent. Let L be
a normal operator with compact resolvent. (This includes the cases of self-
adjoint operators and skew-adjoint operators.) Then L has an orthogonal basis
of eigenvectors. The eigenvalues have finite multiplicity. The only possible
accumulation point of eigenvalues is infinity.

4.2 Problems

1. Perhaps the most beautiful self-adjoint operator is the spherical Laplacian

∆S =
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
.

Show by explicit computation that this is a Hermitian operator acting on
L2 of the sphere with surface measure sin θ dθ dφ. Pay explicit attention
to what happens at the north pole and south pole when one integrates by
parts.

2. Let r be the radius satisfying r2 = x2 + y2 + z2. Let

L = r
∂

∂r

be the Euler operator. Show that the Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

is related to L and ∆S by

∆ =
1
r2

[L(L+ 1) + ∆S ].

3. Let p be a polynomial in x, y, z that is harmonic and homogeneous of
degree `. Thus ∆p = 0 and Lp = `p. Such a p is called a solid spherical
harmonic. Show that each solid spherical harmonic is an eigenfunction of
∆S and find the corresponding eigenvalue as a function of `.

4. The restriction of a solid spherical harmonic to the sphere r2 = 1 is called
a surface spherical harmonic. The surface spherical harmonics are the
eigenfunctions of ∆S . Show that surface spherical harmonics for different
values of ` are orthogonal in the Hilbert space of L2 functions on the
sphere.

5. The dimension of the eigenspace indexed by ` is 2` + 1. For ` = 0 the
eigenspace is spanned by 1. For ` = 1 it is spanned by z, x + iy, and
x− iy. For ` = 2 it is spanned by 3z2− r2, z(x+ iy), z(x− iy), (x+ iy)2,
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and (x − iy)2. For ` = 3 it is spanned by 5z3 − 3zr2, (5z2 − r2)(x + iy).
(5z2− r2)(x− iy), z(x+ iy)2, z(x− iy)2, (x+ iy)3, (x− iy)3. Express the
corresponding surface spherical harmonics in spherical coordinates.

6. In the case ` = 1 we can write the general spherical harmonic as ax+by+cz.
In the case ` = 2 we can write it as ax2 + by2 + cz2 + dxy + eyz + fzx
with an additional condition on the coefficients. What is this condition?
In the case ` = 3 we can write it as a1x

3 + b1y
2x+ c1z

2x+ a2y
3 + b2z

2y+
c2x

2y+a3z
3 + b3x

2z+ c3y
2z+dxyz with additional conditions. What are

they?

4.3 Variation of parameters and Green’s func-
tions

First look at first order linear ordinary differential operators. Let Lu = p(x)u′+
r(x)u. Let u1 be a non-zero solution of the homogeneous equation Lu = 0. The
general solution of the homogeneous equation Lu = 0 is u(x) = c1u1(x), where
c1 is a parameter. The method of variation of parameters gives a solution of
the inhomogeneous equation Lu = f in the form u(x) = c1(x)u1(x).

The condition on the parameter is given by plugging u into Lu = f . This
gives p(x)c′1(x)u1(x) = f(x). The solution is c′1(x) = f(x)/(p(x)u1(x)). The
only difficult part is to integrate this to get the general solution

u(x) =
∫ x

a

u1(x)
p(y)u1(y)

f(y) dy + Cu1(x). (4.1)

Now look at second order linear ordinary differential operators. Let Lu =
p(x)u′′+r(x)u′+q(x)u. Let u1 and u2 be independent solutions of the homoge-
neous equation Lu = 0. The general solution of the homogeneous equation Lu =
0 is u(x) = c1u1(x) + c2u2(x), where c1 and c2 are parameters. The method of
variation of parameters gives a solution of the inhomogeneous equation Lu = f
in the form u(x) = c1(x)u1(x) + c2(x)u2(x). Not only that, it has the property
that the derivative has the same form, that is, u′(x) = c1(x)u′1(x) + c2(x)u′2(x).

If this is to be so, then c′1(x)u1(x) + c′2(x)u2(x) = 0. This is the first
equation. The second equation is given by plugging u into Lu = f . This
gives p(x)(c′1u

′
1(x) + c′2(x)u

′
2(x)) = f(x). This system of two linear equations

is easily solved. Let w(x) = u1(x)u′2(x) − u2(x)u′1(x). The solution is c′1(x) =
−u2(x)f(x)/(p(x)w(x)) and c′2(x) = u1(x)f(x)/(p(x)w(x)).

A solution of Lu = f is thus

u(x) =
∫ b

x

u1(x)u2(y)
p(y)w(y)

f(y) dy +
∫ x

a

u2(x)u1(y)
p(y)w(y)

f(y) dy. (4.2)

Furthermore,

u′(x) =
∫ b

x

u′1(x)u2(y)
p(y)w(y)

f(y) dy +
∫ x

a

u′2(x)u1(y)
p(y)w(y)

f(y) dy. (4.3)
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Notice that u(a) = Au1(a) and u′(a) = Au′1(a), while u(b) = Bu2(b) and
u′(b) = Bu′2(b). So this form of the solution is useful for specifying boundary
conditions at a and b.

The general solution is obtained by adding an arbitrary linear combination
C1u1(x)+C2u2(x). However often we want a particular solution with boundary
conditions at a and b. Then we use the form above. This can also be written

u(x) = (Kf)(x) =
∫ b

a

k(x, y)f(y) dy, (4.4)

where

k(x, y) =

{
u1(x)u2(y)
p(y)w(y) if x < y

u2(x)u1(y)
p(y)w(y) if x > y

(4.5)

Sometime one thinks of y as a fixed source and write the equation

Lxk(x, y) = δ(x− y). (4.6)

Of course this is just another way of saying that LK = I.

4.4 Second order differential operators with a
bounded interval: point spectrum

Example. Consider the self-adjoint differential operator LD = −d2/dx2 on
L2(0, 1) with Dirichlet boundary conditions f(0) = 0 and f(1) = 0 at 0 and
1. Take the solutions u1(x) = sin(

√
λx)/

√
λ and u2(x) = sin(

√
λ(1 − x))/

√
λ.

These are defined in a way that does not depend on which square root of λ
is taken. (Furthermore, they have obvious values in the limit λ → 0.) Then
p(x) = −1 and w(x) = − sin(

√
λ)/

√
λ. This also does not depend on the cut.

The resolvent is thus ((LD − λ)−1g)(x) = f(x) where

f(x) =
1√

λ sin(
√
λ)

[∫ x

0

sin(
√
λ(1− x)) sin(

√
λy)g(y) dy +

∫ 1

x

sin(
√
λx) sin(

√
λ(1− y))g(y) dy

]
.

(4.7)
The spectrum consists of the points λ = n2π2 for n = 1, 2, 3, . . .. This is
standard point spectrum. It is amusing to work out the spectral projection at
the eigenvalue n2π2. This is the negative of the residue and is explicitly

(Png)(x) = 2
∫ 1

0

sin(nπx) sin(nπy)g(y) dy. (4.8)

Example. Consider the self-adjoint differential operator LN = −d2/dx2 on
L2(0, 1) with Neumann boundary conditions f ′(0) = 0 and f ′(1) = 0 at 0 and
1. Take the solutions u1(x) = cos(

√
λx) and u2(x) = cos(

√
λ(1 − x)). Then

p(x) = −1 and w(x) =
√
λ sin(

√
λ). This also does not depend on the cut. The
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resolvent is thus

((LN−λ)−1g)(x) = − 1√
λ sin(

√
λ)

[∫ x

0

cos(
√
λ(1− x)) cos(

√
λy)g(y) dy +

∫ 1

x

cos(
√
λx) cos(

√
λ(1− y))g(y) dy

]
.

(4.9)
The spectrum consists of the points λ = n2π2 for n = 0, 1, 2, 3, . . .. This is
standard point spectrum. The spectral projection at the eigenvalue n2π2 for
n = 1, 2, 3, . . . is

(Png)(x) = 2
∫ 1

0

cos(nπx) cos(nπy)g(y) dy. (4.10)

For n = 0 it is

(P0g)(x) =
∫ 1

0

g(y) dy. (4.11)

It is interesting to compute the reduced resolvent of LN at the eigenvalue 0.
Thus we must compute (LN −λ)−1ḡ, where ḡ = (1−P )g has zero average, and
then let λ approach zero. This is easy. Expand the cosine functions to second
order. The constant terms may be neglected, since they are orthogonal to ḡ.
This gives

(S0ḡ)(x) =
∫ x

0

(
1
2
(1−x)2 +

1
2
y2)ḡ(y) dy+

∫ 1

x

(
1
2
x2 +

1
2
(1− y)2)ḡ(y) dy. (4.12)

From this it is easy to work out that

(S0g)(x) =
∫ x

0

(
1
2
(1−x)2 +

1
2
y2− 1

6
)g(y) dy+

∫ 1

x

(
1
2
x2 +

1
2
(1− y)2− 1

6
)g(y) dy.

(4.13)

4.5 Second order differential operators with a
semibounded interval: continuous spectrum

Example. Consider the self-adjoint differential operator LD = −d2/dx2 on
L2(0,∞) with Dirichlet boundary condition f(0) = 0 at 0. Take the solutions
u1(x) = sinh(

√−λx)/√−λ and u2(x) = e−
√−λx. Since sinh(iz) = i sin(z), this

is the same u1(x) as before. In u2(x) the square root is taken to be cut on the
negative axis. Then p(x) = −1 and w(x) = −1. The resolvent is

((LD−λ)−1g)(x) =
1√−λ

[∫ x

0

e−
√−λx sinh(

√
−λy)g(y) dy +

∫ ∞

x

sinh(
√
−λx)e−

√−λyg(y) dy
]
.

(4.14)
The spectrum consists of the positive real axis and is continuous.

It is instructive to compute the resolvent of the self-adjoint differential oper-
ator LN = −d2/dx2 on L2(0,∞) with Neumann boundary condition f ′(0) = 0
at 0. Again the spectrum consists of the positive real axis and is continuous.
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4.6 Second order differential operators with an
infinite interval: continuous spectrum

Example. Consider the self-adjoint differential operator L = −d2/dx2 on L2(−∞,∞).
There is now no choice of boundary conditions. The resolvent is

((L−λ)−1g)(x) =
1

2
√−λ

[∫ x

−∞
e−
√−λxe

√−λyg(y) dy +
∫ ∞

x

e
√−λxe−

√−λyg(y) dy
]
.

(4.15)
This can also be written in the form

((L− λ)−1g)(x) =
1

2
√−λ

∫ ∞

−∞
e−
√−λ|x−y|g(y) dy. (4.16)

The spectrum consists of the positive real axis and is continuous.

4.7 The spectral theorem for normal operators

Throughout the discussion we make the convention that the inner product is
conjugate linear in the first variable and linear in the second variable.

The great theorem of spectral theory is the following.
Let H be a Hilbert space. Let L be a normal operator. Then there exists

a set K (which may be taken to be a disjoint union of copies of the line) and
a measure µ on K and a unitary operator U : H → L2(K,µ) and a complex
function λ on K such that

(ULf)(k) = λ(k)(Uf)(k). (4.17)

Thus if we write Λ for the operator of multiplication by the function λ, we get
the representation

L = U∗ΛU. (4.18)

The theorem is a generalization of the theorem on diagonalization of normal
matrices. If the measure µ is discrete, then the norm in the space L2(µ) is given
by ‖g‖2 =

∑
k |g(k)|2µ({k}). The λk are the eigenvalues of L. The equation

then says
(ULf)k = λk(Uf)k. (4.19)

The unitary operator U is given by

(Uf)k = (ψk, f), (4.20)

where the ψk are eigenvectors of L normalized so that µ({k}) = 1/(ψk, ψk) .
The inverse of U is given by

U∗g =
∑

k

gkψk µ({k}). (4.21)
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The equation

Lf = U∗ΛUf (4.22)

says explicitly that

Lf =
∑

k

λk(ψk, f)ψk µ({k}). (4.23)

If the measure µ is continuous, then the norm in the space L2(K,µ) is given
by ‖g‖2 =

∫ |g(k)|2 dµ(k). Then λ(k)is a function of the continuous parameter
k. The equation then says

(ULf)(k) = λ(k)(Uf)(k). (4.24)

In quite general contexts the unitary operator U is given by

(Uf)(k) = (ψk, f), (4.25)

but now this equation only makes sense for a dense set of f in the Hilbert space,
and the ψk resemble eigenvectors of L, but do not belong to the Hilbert space,
but instead to some larger space, such as a space of slowly growing functions or
of mildly singular distributions. The inverse of U is given formally by

U∗g =
∫
g(k)ψk dµ(k), (4.26)

but this equation must be interpreted in some weak sense. The equation

Lf = U∗ΛUf (4.27)

says formally that

Lf =
∫
λ(k)(ψk, f)ψk dµ(k). (4.28)

Since the eigenvectors ψk are not in the Hilbert space, it is convenient in
many contexts to forget about them and instead refer to the measure µ and
the function λ and to the operators U and U∗. The theorem says simply that
every normal operator L is isomorphic to multiplication by a function λ. The
simplicity and power of the equation L = U∗ΛU cannot be overestimated.

The spectral theorem for normal operators says that every normal operator
is isomorphic (by a unitary operator mapping the Hilbert space to an L2 space)
to a multiplication operator (multiplication by some complex valued function
λ). The spectrum is the essential range of the function. This is the set of points
ω such that for each ε > 0 the set of all points k such that λ(k) is within ε of w
has measure > 0. This is obvious; a function λ(k) has 1/(λ(k)−w) bounded if
and only if w is not in the essential range of λ(k).
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4.8 Examples: compact normal operators

The theorem on compact normal operators is a corollary of the general spectral
theorem. Consider a compact normal operator L. Say that it is isomorphic
to multiplication by λ. Fix ε > 0 and look at the part of the space where
|L| ≥ ε. This is just the part of the space that is isomorphic to the part of L2

where |λ| ≥ ε. More explicitly, this is the subspace consisting of all functions g
in L2 such that g(k) 6= 0 only where |λ(k)| ≥ ε. On this part of the space the
operator L maps the unit ball onto a set that contains the ball of radius ε. Since
L is compact, it follows that this part of the space is finite dimensional. This
shows that the spectrum in the subspace where |L| ≥ ε is finite dimensional.
Therefore there are only finitely many eigenvectors of finite multiplicity in this
space. Since ε > 0 is arbitrary, it follows that there are only countably many
isolated eigenvectors of finite multiplicity in the part of the space where |L| > 0.
In the part of the space where L = 0 we can have an eigenvalue 0 of arbitrary
multiplicity (zero, finite, or infinite).

4.9 Examples: translation invariant operators
and the Fourier transform

The nicest examples for the continuous case are given by translation invariant
operators acting in H = L2(R, dx). In this case the Fourier transform maps H
into L2(R, dk/(2π)). The Fourier transform is given formally by

(Ff)(k) = (ψk, f) =
∫ ∞

−∞
e−ikxf(x) dx. (4.29)

Here ψk(x) = eikx, and we are using the convention that the inner product is
linear in the second variable. The inverse Fourier transform is

(F−1g)(x) =
∫ ∞

−∞
eikxg(k)

dk

2π
. (4.30)

Here are some examples:
Example 1: Translation. Let Ua be defined by

(Taf)(x) = f(x− a). (4.31)

Then Ta is unitary. The spectral representation is given by the Fourier trans-
form. In fact

(FTaf)(k) = exp(−ika)(Ff)(k). (4.32)

Example 2: Convolution. Let C be defined by

(Cf)(x) =
∫ ∞

−∞
c(x− y)f(y) dy =

∫ ∞

−∞
c(a)f(x− a) da, (4.33)
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where c is an integrable function. Then C is bounded normal. Then by inte-
grating the first example we get

(FCf)(k) = ĉ(k)(Ff)(k), (4.34)

where ĉ is the Fourier transform of c.
Example 3: Differentiation. Let D be defined by

(Df)(x) =
df(x)
dx

. (4.35)

Then D is skew-adjoint. Furthermore, we get

(FDf)(k) = ik(Ff)(k). (4.36)

Notice that the unitary operator in Example 1 may be written

Ua = exp(−aD). (4.37)

Example 4. Second differentiation. Let D2 be defined by

(D2f)(x) =
d2f(x)
dx2

. (4.38)

Then D is self-adjoint. Furthermore, we get

(FDf)(k) = −k2(Ff)(k). (4.39)

We can take interesting functions of these operator. For instance (−D2 +

m2)−1 is convolution by 1/(2m)e−m|x|. And exp(tD2) is convolution by 1/
√

2πte
−x2

2t .

4.10 Examples: Schrödinger operators

If V (x) is a real locally integrable function that is bounded below, then

H = −D2 + V (x) (4.40)

is a well-defined self-adjoint operator. Such an operator is called a Schrödinger
operator.

If V (x) →∞ as |x| → ∞, then the spectrum ofH is point spectrum. Finding
the eigenvalues is a challenge. One case where it is possible to obtain explicit
formulas is when V (x) is a quadratic function.

Also there is an interesting limiting case. If V (x) = 0 for 0 < x < 1 and
V (x) = +∞ elsewhere, then we may think of this as the operator H = −D2

with Dirichlet boundary conditions at the end points of the unit interval. We
know how to find the spectrum in this case.

If on the other hand, V (x) is integrable on the line, then the spectrum of
H consists of positive continuous spectrum and possibly some strictly negative
eigenvalues. A nice example of this is the square well, where there is a constant
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a > 0 with V (x) = −a for 0 < x < 1 and V (x) = 0 otherwise. This is another
case where computations are possible.

The calculation of the spectral properties of Schrödinger operators is the
main task of quantum physics. However we shall see that Schrödinger opera-
tors play a role in other contexts as well. (One example will be in calculus of
variations.)

4.11 Subnormal operators

The spectral theorem for normal operators is a landmark. However not every
operator is normal. One important class of operators with fascinating spectral
properties consists of the subnormal operators. A subnormal operator is an
operator that is the restriction of a normal operator to an invariant subspace.
First consider the case of bounded operators. An operator S : H → H is
subnormal if there exists a larger Hilbert space H ′ with H ⊂ H ′ as a closed
subspace, a normal operator N : H ′ → H ′ that leaves H invariant, and such
that N restricted to H is S.

Example: Let H = L2([0,∞), dt). For each a ≥ 0 define

(Saf)(t) = f(t− a) (4.41)

for a ≤ t and
(Saf)(t) = 0 (4.42)

for 0 ≤ t < a. Then Sa is subnormal.
To see this, consider the bigger space H ′ = L2(R, dt) and consider H as

the subspace of functions that vanish except on the positive reals. Let Ua be
translation by a on H ′. If a ≥ 0, then the subspace H is left invariant by Ua.
Then Sa is Ua acting in this subspace.

It follows from the spectral theorem that a subnormal operator S is isomor-
phic by a unitary operator U : H →M to a multiplication operator that sends
g(k) to λ(k)g(k). Here M is a closed subspace of an L2 space. For each f in H
we have Uf in M and USf(k) = λ(k)(Uf)(k) in M .

Now it is more difficult to characterize the spectrum. A number w is in the
resolvent set if 1/(λ(k)−w)g(k) is in M for every function g(k) in M . However
it is not sufficient that this is a bounded function. If, for instance, every function
g(k) in M has an extension to an analytic function g(z) defined on some larger
region, then one would want 1/(λ(z) − w)g(z) to also be an analytic function
in this region. So we need to require also that w is not in the range of the
extension λ(z).

Example: Let F be the Fourier transform applied to the Hilbert space H
of L2 functions that vanish except on the positive axis. Then the image of this
transform consists of the subspace M of L2 functions g(k) that are boundary
values of analytic functions g(z) in the lower half plane. The operator Sa for a >
0 is isomorphic to multiplication by λ(k) = exp(−iak) acting in this subspace.
This function extends to a function λ(z) = exp(−iaz) defined in the lower half
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plane. So the spectrum is the range of this function. But the image of =z ≤ 0
under exp(−iaz) is the unit circle |w| ≤ 1. So this is the spectrum.

The adjoint of a subnormal operator S : H → H is another operator S∗ :
H → H. The adjoint S∗ need not be subnormal.

Lemma. If N : H ′ → H ′ is normal, H ⊂ H ′, and S : H → H is the
restriction of N to H, then S∗ : H → H is given by S∗ = PN∗, where P is the
orthogonal projection of H ′ onto H.

Proof: If u is in H, for each v in H we have

(S∗u, v) = (u, Sv) = (u,Nv) = (N∗u, v). (4.43)

This says that N∗u−S∗u is orthogonal to every v in H. Since S∗u is in H, this
implies that S∗u is the orthogonal projection of N∗u onto H.

Theorem. If S is a subnormal operator, then SS∗ ≤ S∗S as quadratic forms,
that is, (u, SS∗u) ≤ (u, S∗Su) for all u in H.

Proof: First note that for u in H ′ we have

(N∗u,N∗u) = (u,NN∗u) = (u,N∗Nu) = (Nu,Nu). (4.44)

Then for u in H we have

(S∗u, S∗u) = (PN∗u, PN∗u) ≤ (N∗u,N∗u) = (Nu,Nu) = (Su, Su). (4.45)

Corollary. If S is a subnormal operator and Su = 0, then S∗u = 0. Thus
the null space of S is contained in the null space of S∗.

Corollary. If S is a subnormal operator and Su = λu, then S∗u = λ̄u. Thus
every eigenvector of S is an eigenvector of S∗.

It is not true that every eigenvalue of S∗ is an eigenvalue of S. It is more
typical that S∗ has eigenvalues while S does not. In fact we shall see examples
in which S∗ has anomalous point spectrum, while S has residual spectrum.

Theorem. If the Hilbert space is finite dimensional, then every subnormal
operator is normal.

Proof: Let S be a subnormal operator acting in H. Since the space H is
finite dimensional, S has an eigenvector u in H with Su = λu. Since S is
subnormal, it follows that S∗u = λ̄u. Let v be a vector in H that is orthogonal
to u. Then (Sv, u) = (v, S∗u) = λ̄(v, u) = 0. Thus the orthogonal complement
of u in H is also an invariant space, so the operator S restricted to this smaller
space is also subnormal. Continue in this way until one finds an orthogonal
basis of eigenvectors for S.

There are examples in which one might want to consider unbounded sub-
normal operators. One possible definition might be the following. Consider an
unbounded normal operator N . Thus there is a dense domain D(N) ⊂ H ′ such
that N : D(N) → H ′ is normal. Let H be a Hilbert space that is a closed sub-
space of H ′. Suppose that D(N)∩H is dense in H and that N sends vectors in
this dense subspace into H. Then if D(S) = D(N)∩H and S is the restriction
of N to D(S), the operator S is subnormal. Then D(S) is dense in H, and
S : D(S) → H is a closed, densely defined operator.
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Example: Let H = L2([0,∞), dt). Define

(Sf)(t) = f ′(t) (4.46)

on the domain consisting of all f in H such that f ′ is also in H and f(0) = 0.
Then S is subnormal.

To see this, consider the bigger space H ′ = L2(R, dt) and consider H as
the subspace of functions that vanish except on the positive reals. Let N be
differentiation on H ′. Notice that if f is in D(N) and is also in H, then f(0) = 0
automatically.

If N is a normal operator acting in H ′, so N : D(N) → H ′, then its adjoint
N∗ is also a normal operator, and in fact D(N∗) = D(N). So if S : D(S) → H
is subnormal, then D(S) = D(N) ∩ H = D(N∗) ∩ H. Furthermore, if u is in
D(N∗) ∩H, then u is in D(S∗) and S∗u = PN∗u. This can be seen from the
computation (u, Sv) = (u,Nv) = (N∗u, v) for all v in D(S).

We conclude that for a subnormal operator D(S) ⊂ D(S∗) and (S∗, S∗u) ≤
(Su, Su) for all u in D(S). This is also an easy computation: (S∗u, S∗u) =
(PN∗u, PN∗u) ≤ (N∗u,N∗u) = (Nu,Nu) = (Su, Su).

Example: For the operator S in the last example we have

(S∗f)(t) = −f ′(t) (4.47)

on the domain consisting of all f in H such that f ′ is also in H. There is no
boundary condition at zero. This is a case where D(S) ⊂ D(S∗) and the two
domains are not equal.

4.12 Examples: forward translation invariant op-
erators and the Laplace transform

The example in the last section is the operator theory context for the theory of
the Laplace transform.

The Laplace transform of a function f in L2([0,∞), dt) is

(Lf)(z) =
∫ ∞

0

e−ztf(t) dt. (4.48)

If we think of z = iω on the imaginary axis, then when regarded as a function
of ω this is the Fourier transform . However it extends as an analytic function
to ω in the lower half plane, that is, to z in the right half plane.

Let a ≥ 0 and let Sa be the operator of right translation filling in with zero
as defined in the previous section. Then

(LSaf)(z) =
∫ ∞

a

e−ztf(t− a) dt = e−az(Lf)(z). (4.49)

So Sa is isomorphic to multiplication by e−az acting on the Hilbert space of
functions analytic in the right half plane. Its spectrum consists of the closed
unit disk.
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Let c be an integrable function defined on the positive axis, and let the causal
convolution C be defined by

(Cf)(t) =
∫ t

0

c(t− u)f(u) du =
∫ t

0

c(a)f(t− a) da. (4.50)

Then C is subnormal, and

(LCf)(z) = ĉ(z)(Lf)(z), (4.51)

where ĉ is the Laplace transform of c.
Let D0 = d/dt be differentiation with zero boundary conditions at the origin.

Then
(LD0f)(z) = z(Lf)(z). (4.52)

Notice that the boundary condition is essential for integration by parts. The
spectrum ofD0 consists of the closed right half plane. We can write exp(−aD0) =
Sa for a ≥ 0. This operator satisfies the differential equation dSaf/da =
−D0Saf for a ≥ 0, provided that f is in the domain of D0 (and in particu-
lar satisfies the boundary condition).

The adjoint of a subnormal operator need not be subnormal. Thus, for
instance, the adjoint of Sa is

(S∗af)(t) = f(t+ a). (4.53)

Its spectrum is also the closed unit disc, but the interior of the disk consists of
point spectrum. Notice that the Laplace transform does not send this into a
multiplication operator. In fact,

(LS∗af)(z) =
∫ ∞

0

e−ztf(t+ a) dt = eaz

[
(Lf)(z)−

∫ a

0

e−ztf(t) dt
]
. (4.54)

Similarly, the adjoint of D0 is −D, where D = d/dt with no boundary
condition. Again the Laplace transform does not make this into a multiplication
operator. In fact, we have

(LDf)(z) = z(Lf)(z)− f(0). (4.55)

The spectrum of D consists of the closed left half plane. The interior consists
of point spectrum. We can write exp(aD) = exp(−aD∗0) = S∗a for a ≥ 0. Even
though D does not have a spectral representation as a multiplication operator,
this operator satisfies the differential equation dS∗af/da = DS∗af for a ≥ 0,
provided f is in the domain of D.

Example: Solve the differential equation (D + k)f = g, with k > 0, with
boundary condition f(0) = c. The operator D + k is not invertible, since −k is
an eigenvalue of D. However we can write f = u− ce−kt and solve

(D0 + k)u = g. (4.56)
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The solution is u = (D0 + k)−1g. In terms of Laplace transforms this is û(z) =
1/(z + k)ĝ(z). It follows that u is given by the causal convolution

u(t) =
∫ t

0

e−k(t−u)g(u) du. (4.57)

Thus

f(t) = f(0)e−kt +
∫ t

0

e−k(t−u)g(u) du. (4.58)

4.13 Quantum mechanics

Here is a dictionary of the basic concepts. Fix a Hilbert space. A quantum
observable is a self-adjoint operator L. A quantum state is a unit vector u. The
expectation of the observable L in the state u in D(L) is

µ = (u, Lu). (4.59)

The variance of the observable L in the state u in D(L) is

σ2 = ‖(L− µI)u‖2. (4.60)

Here are some observables. The Hilbert space is L2(R, dx). The momentum
observable is p = −ih̄d/dx. Here h̄ > 0 is Planck’s constant. The position
observable is q which is multiplication by the coordinate x. The Heisenberg
uncertainty principle says that for every state the product σpσq ≥ h̄/2.

If L is an observable and f is a real function, then f(L) is an observable.
Take the case where the function is 1A, the indicator function of a set A of
position coordinate values. Then 1A(q) has expectation

(u, 1A(q)u) =
∫

A

|u(x)|2 dx. (4.61)

This is the probability that the position is in A. Similarly, take the case where
the function is 1B , the indicator function of a set B of momentum coordinate
values. Since in the Fourier transform representation p is represented by multi-
plication by h̄k, it follows that 1B(p) has expectation

(u, 1B(p)u) =
∫

{k|h̄k∈B}
|û(k)|2 dk

2π
. (4.62)

This is the probability that the momentum is in B.
Energy observables are particularly important. The kinetic energy observable

is H0 = p2/(2m) = −h̄2/(2m)d2/dx2. Here m > 0 is the mass. The spectrum of
H0 is the positive real axis. The potential energy observable is V = v(q) which is
multiplication by v(x). Here v is a given real function that represents potential
energy as a function of the space coordinate. The spectrum of V is the range
of the function v. The total energy observable or quantum Hamiltonian is

H = H0 + V =
p2

2m
+ v(q) = − h̄2

2m
d2

dx2
+ v(x). (4.63)
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If we assume that the function v is bounded, then H is a self-adjoint operator.
(In many cases when v is only bounded below it remains a self-adjoint oper-
ator.) The problem of investigating its spectrum is of the utmost importance
for quantum mechanics. Since H0 and V do not commute, this is not an easy
problem.

Suppose that the total energy observable H is a self-adjoint operator. Then
the time evolution operator is the unitary operator exp(−itH/h̄). A central
problem of quantum mechanics is to compute this operator. This is not easy,
because while exp(−itH0/h̄) and exp(−itV/h̄) are easy to compute, the opera-
tors H0 and V do not commute. So there is no direct algebraic way to express
exp(−itH/h̄) in terms of the simpler operators. Nevertheless, we shall encounter
a beautiful formula for this time evolution operator in the next chapter.

4.14 Problems

1. A particularly fascinating self-adjoint operator is the quantum harmonic
oscillator. (This operator also occurs in disguised form in other contexts.)
It is

N =
1
2

(
− d2

dx2
+ x2 − 1

)

acting in L2(−∞,∞). Show that it factors as

N = A∗A,

where

A =
1√
2

(
x+

d

dx

)

and

A∗ =
1√
2

(
x− d

dx

)
.

2. Show that AA∗ = A∗A+ I.

3. Solve the equation Au0 = 0. Show that Nu0 = 0.

4. Show that if Nun = nun and un+1 = A∗un, then Nun+1 = (n + 1)un+1.
Thus the eigenvalues of N are the natural numbers. These are the stan-
dard type of point spectrum.

5. Show that each eigenfunction un is a polynomial in x times u0(x). Find
the polynomials for the cases of n = 0, 1, 2, 3 explicitly (up to constant
factors). Verify that each un belongs to the Hilbert space.

6. It may be shown that A∗ is a subnormal operator and so A is the adjoint
of a subnormal operator. Find all eigenvalues (point spectrum) of A.
Find each corresponding eigenvector. Verify that it belongs to the Hilbert
space.



60 CHAPTER 4. NORMAL OPERATORS

7. Find all eigenvalues (point spectrum) of A∗. Find the spectrum of A∗.
What kind of spectrum is it?

8. If A∗ is indeed a subnormal operator, then we should have A∗A ≤ AA∗

as quadratic forms. Is this the case?



Chapter 5

Calculus of Variations

5.1 The Euler-Lagrange equation

The problem is to find the critical points of

F (y) =
∫ x2

x1

f(y, yx, x) dx. (5.1)

The differential of F is

dF (y)h =
∫ x2

x1

(fyh+ fyxhx) dx =
∫ x2

x1

(fy − d

dx
fyx)h dx+ fyxh |x2

x1
. (5.2)

Thus for the differential to be zero we must have the Euler-Lagrange equation

fy − d

dx
fyx = 0. (5.3)

This is an equation for the critical function y. It is second order, and it has the
explicit form

fy − fyyx

dy

dx
− fyxyx

d2y

dx2
− fxyx = 0. (5.4)

This equation is linear in d2y/dx2. However the coefficients are in general
nonlinear expressions in y, dy/dx, and x.

If the y are required to have fixed values y = y1 at x = x1 and y = y2 at
x = x2 at the end points, then the h are required to be zero at the end points.
The corresponding boundary term is automatically zero.

If the y and h are free to vary at an end point, then at a critical point one
must have fyx = 0 at at the end points.

Sometimes one wants to think of

δF

δy(x)
=
∂f

∂y
− d

dx

∂f

∂yx
(5.5)

61
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as the gradient of F , where the inner product is given by the integral. This
expression is then known as the variational derivative. The Euler-Lagrange
equation then says that the variational derivative is zero.

Example. Consider the problem of minimizing the length

F (y) =
∫ x2

x1

√
1 + y2

x dx (5.6)

between the points (x1, y1) and (x2, y2). The boundary condition are y(x1) = y1
and y(x2) = y2. The solution of the Euler-Lagrange equation is yx = C, a
curve of constant slope. So the solution is y − y1 = m(x − x1), where m =
(y2 − y1)/(x2 − x1).

Example. Consider the problem of minimizing the length

F (y) =
∫ x2

x1

√
1 + y2

x dx (5.7)

between the lines x = x1 and x = x2. The boundary conditions for the Euler-
Lagrange equation are yx(x1) = 0 and yx(x2) = 0. The solution of the Euler-
Lagrange equation is yx = C, a curve of constant slope. But to satisfy the
boundary conditions C = 0. So the solution is y = A, where A is a arbitrary
constant.

5.2 A conservation law

Say that one has a solution of the Euler-Lagrange equation. Then

d

dx
f = fyyx + fyxyxx + fx =

d

dx
(yxfyx) + fx. (5.8)

Thus
d

dx
H + fx = 0, (5.9)

where
H = yxfyx − f. (5.10)

If fx = 0, then this says that H is constant. This is the conservation law. It is
a nonlinear equation for y and dy/dx. It takes the explicit form

yxfyx − f = C. (5.11)

Thus it is first order, but in general fully nonlinear in yx. How in practice does
one solve a problem in calculus of variations? There is a way when the function
f(y, yx) does not depend on x. Use the conservation law H(y, dy/dx) = C
to solve for dy/dx = α(y). Perhaps this equation can be solved directly. Or
write dx = dy/α(y). Integrate both sides to get x in terms of y. Or make a
substitution expressing y in terms of a new variable u, and get x and y each in
terms of u.
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Example 1: This example comes from minimizing the area of a surface of
revolution. The unknown is a function y of x between −a and a. The value of
y at ±a is r. The element of area is proportional to 2πy ds = 2πy

√
1 + y2

x dx.
Let f(y, yx) = 2πy

√
1 + y2

x. Then H = −2πy/
√

1 + y2
x = −C. The differential

equation to be solved is (dy/dx)2 = (k2y2 − 1), where k = 2π/C. This has
solution y = (1/k) cosh(k(x − x0)). By symmetry x0 = 0. So we need to solve
rk = cosh(ak). This equation has to be solved for k. Fix r and vary a. When a
is small enough, then cosh(ak) cuts the line rk in two points. Thus there are two
solutions of the Euler-Lagrange equations, corresponding to y = (1/k) cosh(kx)
with the two values of k. The derivative is dy/dx = sinh(kx). The smaller value
of k gives the smaller derivative, so this is the minimum area surface satisfying
the boundary conditions.

Example 2: This example comes up finding the maximum area for given
arc length. For simplicity consider y as a function of x between −a and a,
with value 0 at the two end points. For simplicity let the arc length κ satisfy
2a < κ < πa. The area is the integral from −a to a of y dx, while the length
is the integral from −a to a of ds =

√
1 + y2

x dx. This is a Lagrange multiplier
problem. The function is f(y, yx) = y − λ

√
1 + y2

x. The conserved quantity
is H = −λ1/

√
1 + y2

x − y = −c1. The differential equation is dx/dy = (y −
c1)/

√
(λ2 − (y − c1)2. Thus x − c2 =

√
λ2 − (y − c1)2, which is the equation

of a circle (x− c2)2 + (y − c1)2 = λ2. The Lagrange multiplier turns out to be
the radius of the circle. By symmetry c2 = 0. Furthermore c1 = −√λ2 − a2. If
we let sin(θ) = a/λ, then the equation sin(θ) < θ < (π/2) sin(θ) translates into
2a < κ = 2λθ < πa.

5.3 Second variation

Say that y is a solution of the Euler-Lagrange equation that has fixed values
at the end points. Then the second differential of F is obtained by expanding
F (y + h) = F (y) + dF (y)h+ 1

2d
2F (y)(h, h) + · · ·. The result is

d2F (y)(h, h) =
∫ x2

x1

(fyyh
2 + 2fyyxhhx + fyxyxh

2
x) dx. (5.12)

The functions h have value 0 at the end points, so we may freely integrate by
parts. The result may thus also be written

d2F (y)(h, h) =
∫ x2

x1

((fyy − d

dx
fyyx)h2 + fyxyxh

2
x) dx. (5.13)

Yet another form is

d2F (y)(h, h) =
∫ x2

x1

[− d

dx
(fyxyxhx) + (fyy − d

dx
fyyx)h]h dx = (Lh, h). (5.14)

We recognize

Lh = − d

dx
(fyxyxhx) + (fyy − d

dx
fyyx)h (5.15)
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as a Sturm-Liouville operator. In fact, if f(y, yx, x) = 1
2y

2
x + g(y, x), then

Lh = −hxx + gyyh (5.16)

is a Schrödinger operator. The coefficient gyy has the solution of the Euler-
Lagrange inserted, so it is regarded as a function of x. The operator has Dirichlet
boundary conditions at the end points of the interval from x1 to x2.

5.4 Interlude: The Legendre transform

The Legendre transform of a function L of v is defined as follows. Let p = dL/dv.
Find the inverse function defining v as a function of p. Then the Legendre
transform is a function H of p satisfying dH/dp = v. The constant of integration
is chosen so that H(0) + L(0) = 0.

Example: Let L = ev− v− 1. Then the derivative is p = ev− 1. The inverse
function is v = log(1 + p). The integral is H = (1 + p) log(1 + p)− p.

There is a remarkable formula relating the Legendre transform of a function
to the original function. Let L be a function of v. Define

p =
dL

dv
. (5.17)

Then
H = pv − L. (5.18)

is the Legendre transform of L. In the following we want to think of L as a
function of the v, while H is a function of the dual variable p. The variable p
is covariant and is dual to the variable v, which is contravariant. Thus in this
formula v is defined in terms of p by solving the equation p = dL/dv for v.

The fundamental theorem about the Legendre transform is

v =
dH

dp
. (5.19)

Proof: Let H = pv−L as above By the product rule and the chain rule and
the definition of p we get

dH

dp
= v + p

dv

dp
− dL

dv

dv

dp
= v + p

dv

dp
− p

dv

dp
= v. (5.20)

Thus the situation is symmetric, and one can go back from H to L in the
same way as one got from L to H. Conclusion: Two functions are Legendre
transforms of each other when their derivatives are inverse functions to each
other.

One would like a condition that guarantees that the equations that define
the Legendre transform actually have solutions. In order for p = dL/dv to have
a unique solution v, it would be useful to have dL/dv to be strictly increasing.
This is the same as saying that dp/dv = d2L/dv2 > 0. The inverse function
then has derivative given by the inverse dv/dp = d2H/dp2 > 0.
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Example: Let L = ev−v−1. Then we have seen thatH = (p+1) log(p+1)−p.
This also follows from the general formula H = pv−L. In fact, since p = ev− 1
has inverse v = log(1+p), we have H = pv−L = p log(1+p)− [(1+p)− log(1+
p) − 1] = (1 + p) log(1 + p) − p. In this example the second derivatives are ev

and 1/(p+ 1). These are both positive, and they are reciprocals of each other.
Example: Let L = va/a with 1 < a <∞ defined for v ≥ 0. Then H = pb/b

with 1 < b < ∞ defined for p ≥ 0. In this case p = va−1 and v = pb−1. The
relation between a and b is (a − 1)(b − 1) = 1. This may also be written as
1/a + 1/b = 1. Thus a and b are conjugate exponents. The second derivatives
are (a− 1)va−2 and (b− 1)pb−2. Again they are reciprocals.

The Legendre transform plays a fundamental role in thermodynamics and
in mechanics. Here are examples from mechanics involving kinetic energy.

Example: Start with L = (1/2)mv2. Then p = mv. So v = p/m and
H = pv − L = p2/(2m). This H is the Legendre transform of L.

Example: If we start instead with H = p2/(2m), then v = p/m. So p = mv
and L = pv −H = (1/2)mv2. The Legendre transform of L brings us back to
the original H.

Example: A famous relativistic expression for energy is H =
√
m2c4 + p2c2.

It is an amusing exercise to compute that L = −mc2
√

1− v2/c2. The key is
the relation p = mv/

√
1− v2/c2 between the derivatives.

The Legendre transform has a generalization to several dimensions. Let L
be a function of v1, . . . , vn. Define

pj =
∂L

∂vj
, (5.21)

so dL =
∑

j pj dvj . (This is the differential of L, so it is a one-form.) Then

H =
∑

k

pkvk − L. (5.22)

is the Legendre transform of L. In the following we want to think of L as a
function of the vj , whileH is a function of the dual variables pk. The variables pk

are covariant and dual to the variable vj , which are contravariant. Thus in this
formula the vj are defined in terms of pk by solving the equation pk = ∂L/∂vk

for the vj .
The fundamental theorem about the Legendre transform in this context is

vk =
∂H

∂pk
. (5.23)

Proof: Let H =
∑

k pkvk − L as above By the product rule and the chain
rule and the definition of p we get

∂H

∂pj
= vj +

∑

k

pk
∂vk

∂pj
−

∑

k

∂L

∂vk

∂vk

∂pj
= vj +

∑

k

pk
∂vk

∂pj
−

∑

k

pk
∂vk

∂pj
= vj . (5.24)

Thus the situation is symmetric, and one can go back from H to L in the
same way as one got from L to H. Conclusion: Two functions are Legendre
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transforms of each other when their derivatives are inverse functions to each
other.

One would like a condition that guarantees that the equations that define
the Legendre transform actually have solutions. In order for the equation to
have a solution locally, the matrix

∂pk

∂vj
=

∂2L

∂vk∂vj
(5.25)

should be invertible. A particularly nice condition is that this matrix is strictly
positive definite. The inverse matrix is then

∂vj

∂pk
=

∂2H

∂pj∂pk
. (5.26)

It is then also strictly positive definite.

5.5 Lagrangian mechanics

One is given a Lagrangian function L that is a function of position q and velocity
q̇ and possibly time t. The problem is to find the critical points of

S(q) =
∫ t2

t1

L(q, qt, t) dt. (5.27)

The function q represents position as a function of time. It has fixed values q1
and q2 at the end points t1 and t2. The differential of S is

dS(q)h =
∫ t2

t1

(Lqh+ Lq̇ht) dt =
∫ t2

t1

(Lq − d

dt
Lq̇)h dt. (5.28)

Here h is a function with values 0 at the end points. Thus for the differential
to be zero we must have the Euler-Lagrange equation

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (5.29)

Say that one has a solution of the Euler-Lagrange equation. Then

d

dt
L = Lqqt + Lq̇qtt + Lt =

d

dt
(qtLq̇) + Lt. (5.30)

Thus along a solution
d

dt
H +

∂L

∂t
= 0, (5.31)

where
H = qtLq̇ − L. (5.32)

If Lt = 0, then this says that H is constant. This is the energy conservation
law.
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Define
p =

∂L

∂q̇
. (5.33)

This is the momentum variable. Then the Euler-Lagrange equation says that
along a solution

dp

dt
=
∂L

∂q
. (5.34)

5.6 Hamiltonian mechanics

Let
H = pq̇ − L. (5.35)

be the Legendre transform of L, where q̇ is defined in terms of p implicitly by
p = ∂L/∂q̇.

In the following we want to think of L as a function of q and q̇ and possibly
t, while H is a function of q and p and possibly t. The momentum variable p is
covariant and is dual to the velocity variable q̇, which is contravariant. However
p is expressed in terms of q and q̇ by solving the Legendre transform equation
p = ∂L/∂q̇. According to the properties of the Legendre transform we have

q̇ =
∂H

∂p
. (5.36)

In fact, the proof is simple if we remember that q is fixed:

∂H

∂p
= q̇ + p

∂q̇

∂p
− ∂L

∂q̇

∂q̇

∂p
= q̇. (5.37)

It also follows that
∂H

∂q
= −∂L

∂q
. (5.38)

This also has an easy proof if we remember that p is fixed and so q̇ depends on
q:

∂H

∂q
= p

∂q̇

∂q
− ∂L

∂q
− ∂L

∂q̇

∂q̇

∂q
= −∂L

∂q
. (5.39)

The Euler-Lagrange equation says that along a solution we have

dp

dt
= −∂H

∂q
. (5.40)

Since p = ∂L/∂q̇ determines the function p in terms of q, dq/dt, and t, it follows
that along a solution

dq

dt
=
∂H

∂p
(5.41)

determines the function dq/dt in terms of q, p, and t. The last two equations
are Hamilton’s equations. They are a first order system, linear in dq/dt and
dp/dt, but nonlinear in q, p, t.
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It is easy to check from Hamilton’s equations that along a solution

dH

dt
=
∂H

∂t
. (5.42)

When H does not depend explicitly on t, then this has an integral in which H
is constant. This integral is conservation of energy. It gives a situation in which
p is related to q. This allows an equation in which dq/dt is related to q. This
relation may be highly nonlinear.

5.7 Kinetic and potential energy

The most classical situation is when

L =
1
2
mq̇2 − V (q). (5.43)

The Euler-Lagrange equation is just.

−V ′(q)− dqt
dt

= 0. (5.44)

This is Newton’s law of motion.
In this problem the momentum is p = mq̇. The Hamiltonian is

H =
1

2m
p2 + V (q). (5.45)

Let us look at this from the point of view of maximum and minimum. The
second differential is determined by the Schrödinger operator

L = −m d2

dt2
− V ′′(q(t)). (5.46)

Here q(t) is a function of t satisfying the Euler-Lagrange equation and the
boundary conditions. So for instance if this operator with Dirichlet boundary
conditions at t1 and t2 has strictly positive eigenvalues, then the solution will
be a minimum. This will happen, for instance, if V ′′(q) ≤ 0. In many other
cases, the solution will not be a minimum of the action, but only a stationary
point.

Example: Take an example with V ′′(q) < 0. Then the problem is to find q(t)
that minimizes the integral from t1 to t1 of (1/2)mq̇2 − V (q). Here q(t1) = q1
and q(t2) = q2 are fixed. Clearly there is tradeoff. One would like the solution
to linger as long as possible in the region where V (q) is large. On the other
hand, to satisfy the boundary conditions the solution should not move too fast.
The solution will start at the point y1 at time t1. Then it go reasonably, but not
excessively, rapidly to the region where V (q) is large. There it will linger. Then
it will fall back to the point y2, arriving there at time t2. This minimization
problem seems to have nothing to do with Newton’s laws. But it gives the same
answer.
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5.8 Problems

Let L be a function of q and q̇ given by

L =
1
2
mq̇2 − V (q).

Let

S(q) =
∫ t2

t1

Ldt,

with functions q of t satisfying q = q1 at t = t1 and q = q2 at t = t2.

1. Show that
dS(q)h = (−m d

dt
q̇ − V ′(q), h),

where h satisfies Dirichlet boundary conditions at t1 and t2.

2. Consider a q(t) for which dS(q) = 0. Show that

d2S(q)(h, h) =
∫ t2

t1

[m
(
dh

dt

)2

− V ′′(q)h2] dt.

where the functions h satisfy Dirichlet boundary conditions at t1 and t2.

3. Consider a q(t) for which dS(q) = 0. Show that

d2S(q)(h, h) = (h, [−m d2

dt2
− V ′′(q)]h),

where the operator satisfies Dirichlet boundary conditions at t1 and t2.

4. Show that if V (q) is concave down, then the solution q(t) of the variational
problem is actually a minimum.

5. Let H = mq̇2−L = (1/2)mq̇2 +V (q). Show that H = E along a solution,
where E is a constant.

6. From now on take the example V (q) = −(1/2)kq2. Here k > 0. Note the
sign. We are interested in solutions with E > 0. Let ω =

√
k/m. Show

that q = C sinh(ωt) is a solution, and find the constant C in terms of E.

7. Take t1 = −T and t2 = T . Take q1 = −a and q2 = a. Fix a. Write the
boundary condition a = C sinh(ωT ) as a relation between T and E. Show
that T → 0 implies E →∞, while T →∞ implies E → 0.

8. Interpret the result of the last problem intuitively in terms of particle
motion satisfying conservation of energy.

9. Interpret the result of the same problem intuitively in terms of a mini-
mization problem.
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5.9 The path integral

Let us return to the problem of evaluating the quantum mechanical time evo-
lution exp(−iitH/h̄). Here the total energy operator H = H0 + V is the sum
of two non-commuting operators, corresponding to potential energy and kinetic
energy.

The problem is easy when we just have kinetic energy. Then we must
evaluate exp(−itH0/h̄), where H0 = p2/(2m) = −h̄2/(2m)d2/dx2. In the
Fourier transform representation this is multiplication by h̄2/(2m)k2. So in the
Fourier transform representation the unitary time evolution is multiplication by
exp(−it(h̄/m)k2/2). This is like the heat equation with complex diffusion coef-
ficient iσ2 = i(h̄/m). So the solution is convolution by the inverse Fourier trans-
form, which is 1/

√
2πiσ2t exp(−x2/(2iσ2t)) = 1/

√
2πi(h̄/m)t exp(ix2/(2(h̄/m)t).

In other words,

(exp(− itH0

h̄
)u)(x) =

∫ ∞

−∞
exp(

im(x− x′)2

th̄
)u(x′)

dx′√
2πi(h̄/m)t

. (5.47)

The calculation of the exponential is also easy when we just have potential
energy. In fact,

(exp(− itV
h̄

)u)(x) = exp(− itv(x)
h̄

)u(x). (5.48)

The Trotter product formula is a remarkable formula that expresses the
result for the sum H = H0 + V in terms of the separate results for H0 and for
V . It may be proved under various circumstances, for example when V is a
bounded operator. The formula says that

exp(− itH
h̄

)u = lim
n→∞

(
exp(− i(t/n)H0

h̄
) exp(− i(t/n)V

h̄
)
)n

u. (5.49)

We can write out the Trotter product formula in detail using the results
obtained before for H0 and for V separately. Write ∆t = t/n. Then the quantity
of interest is (exp(− itH

h̄ )u)(x) = u(x, t) given by the Trotter formula. This works
out to be

u(x, t) = lim
n→∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp



i
∑n−1

j=0

[(
xj+1−xj

∆t

)2

− V (xj)
]

∆t

h̄


u(x0)

dxn−1 · · · dx0

(
√

2πi(h̄/m)∆t)n
,

(5.50)
where xn = x.

So far this has been rigorous. However now we follow Feynman and take the
formal limit as n→∞ and ∆t→ 0 with n∆ = t fixed. This gives

(exp(− itH
h̄

)u)(x) =
∫

exp



i
∫ t

0

[(
dx(t′)

dt

)2

− V (x(t′))
]
dt′

h̄


u(x0)Dx,

(5.51)
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where the integral is over all paths x from some x0 at time 0 to fixed final x at
time t. This can also be written

(exp(− itH
h̄

)u)(x) =
∫

exp

(
i
∫ t

0
L(x(t′), dx(t′)

dt ) dt′

h̄

)
u(x0)Dx, (5.52)

where

L(x(t′),
dx(t′)
dt

) =
(
dx(t′)
dt

)2

− V (x(t′)) (5.53)

is the Lagrangian. Thus the integrand in the path integral is the exponential of
i times the action divided by h̄.

This expression goes some way toward an explanation of the principle of
stationary action. Consider a part of the integral near a path that is not a
critical point of the action. Then nearby paths will have considerably different
values of the action, and after division by h̄ the phase will be very different. So
there will be a lot of cancelation. On the other hand, the part of the integral
near a path that is a critical point will contribute more or less the same value
of the action. So there will be no cancelation.

5.10 Appendix: Lagrange multipliers

In this section y will represent the coordinates y1, . . . , yn. We are interested in
finding the critical points of a scalar function F (y) = F (y1, . . . , yn).

Consider first the problem of finding a critical point of F (y) with no con-
straints. The usual method is to compute the differential and set it equal to
zero, so that the equation to be solved is dF (y) = 0.

Consider the problem of finding a critical point of F (y) subject to a con-
straint G(y) = κ.

The method of Lagrange multipliers is to say that the differential of F (y)
without the constraint must satisfy

dF (y) = λdG(y) (5.54)

for some λ. That is, the function can vary only by relaxing the constraint. The
change in the function must be proportional to the change in the constraint.
This fundamental equation is an equation for differential forms, and it takes the
same form in every coordinate system.

Example: Maximize y1y2 subject to y2
1 + y2

2 = κ. The equation is y2 dy1 +
y1 dy2 = λ(2y1 dy1 +2y2 dy2). This gives y2 = 2λy1 and y1 = 2λy2. Eliminating
λ we get y2

1 = y2
2 . Combine this with y2

1 + y2
2 = κ. We get y1 = ±

√
κ/2 and

y2 = ±
√
κ/2. The value of y1y2 at these points are ±κ/2. If you care, you can

also compute that λ = ±1/2.
Say that ȳ is a critical point, so in particular it satisfies the constraint G(ȳ) =

κ. Then dG(ȳ) = dκ. It follows that dF (ȳ) = λdG(ȳ) = λdκ. The conclusion is
that the Lagrange multiplier λ is the rate of change of the value of the function
at the critical point as a function of the constraint parameter, that is, λ = dF (ȳ)

dκ .
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Example: In the last example the derivative of the maximum value ±κ/2
with respect to κ is λ = ±1/2.

In calculations, one wants to maximize F (y) subject to the constraint G(y) =
κ. The idea is to take λ arbitrary. Set F̄ (y) = F (y) − λG(y) and require
dF̄ (y) = 0. This gives the above equation for y and λ. However one also has
the constraint equation for y and λ. These two are then solved simultaneously.

The method of Lagrange multipliers extends to the case when there are
several constraints.

Consider the problem of finding a critical point of F (y) subject to constraint
G1(y) = κ1, . . . , Gm(y) = κm..

The method of Lagrange multipliers is to say that the differential of F (y)
without the constraint must satisfy

dF (y) =
m∑

j=1

λjdGj(y) (5.55)

for some λ. That is, the function can vary only by relaxing the constraint. The
change in the function must be proportional to the change in the constraints.
This fundamental equation is an equation for differential forms, and it takes the
same form in every coordinate system.

Say that ȳ is a critical point, so in particular it satisfies the constraints
Gj(ȳ) = κj . Then dGj(ȳ) = dκj . It follows that dF (ȳ) =

∑
j λjdGj(ȳ) =∑

j λjdκj . The conclusion is that the Lagrange multiplier λj is the rate of change
of the value of the function at the critical point as a function of the constraint
parameter κj , with the other constraint parameters fixed. Thus λj = ∂F (ȳ)

∂κj
.



Chapter 6

Perturbation theory

6.1 The implicit function theorem: scalar case

Let f(u, ε) be a function of u and ε. Let fu(u, ε) be the partial derivative of F
as a function of u. The assumption for the implicit function theorem is that
f(u0, 0) = 0 and the partial derivative fu(u0, 0) 6= 0. There are some other
technical assumptions. The conclusion is that the equation

f(u, ε) = 0 (6.1)

defines u as a function of ε for ε sufficiently near 0, in such a way that ε = 0 is
mapped into u0.

The intuition behind the theorem is that one can expand

f(u, ε) ≈ fu(u0, 0)(u− u0) + fε(u0, 0)ε. (6.2)

Then we can solve
u ≈ u0 − fu(u0, 0)−1fε(u0, u)ε. (6.3)

For ε small this is a very good approximation. In fact, this says that at the
point ε = 0 we have

du

dε
= −fu(u0, 0)−1fε(u0, 0). (6.4)

This result is called first order perturbation theory.
For practical calculations one wants to compute higher derivatives u(n) as a

function of ε. These are used in the Taylor expansion

u =
∞∑

n=0

u(n)

n!
εn. (6.5)

In first order we have
fuu

(1) + fε = 0 (6.6)

73
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which gives the first order result

u(1) = −f−1
u fε. (6.7)

Usually we are interested in evaluating this expression at u = u0 and ε = 0.
The second order result is obtained by differentiating the first order equation.

This gives
fuu

(2) + fuu(u(1))2 + 2fuεu
(1) + fεε = 0. (6.8)

Thus the result of second order perturbation theory is that

u(2) = −f−1
u [fuu(u(1))2 + 2fuεu

(1) + fεε]. (6.9)

Again we are interested in evaluating this expression at u = u0 and ε = 0.
The general pattern is this. The nth derivative is given by

fuu
(n) + rn = 0 (6.10)

Differentiate again. This gives

fuu
(n+1) + [fuuu

(1) + fuε]u(n) + [rnuu
(1) + rnε] = 0. (6.11)

Thus at every stage one only has to invert the first derivative fu.
Example: Here is a simple example. Fix a. We want to solve u = a+ εg(u)

to find u as a function of ε. The first derivative is uε = g(u) + εg′(u)uε. The
second derivative is uεε = 2g′(u)uε + εg′(u)uεε + εg′′(u)u2

ε . The third derivative
is uεεε = 3g′′(u)u2

ε +3g′(u)uεε +ε times other junk. Evaluate these at ε = 0, that
is, at u = a. This gives uε = g(a), uεε = 2g(a)g′(a), and uεεε = 3g(a)2g′′(a) +
6g(a)g′(a)2. It is difficult to see the pattern. However in the next section we
will see that there is one, at least in this case.

Example: Another popular way of solving the problem is to substitute u =
a+ u′ε+ 1

2u
′′ε2 + 1

6u
′′′ε3 + · · · in the equation. This gives

a+u′ε+
1
2
u′′ε2+

1
6
u′′′ε3+· · · = a+ε[g(a)+g′(a)(u′ε+

1
2
u′′ε2+· · ·)+1

2
ε2g′′(a)(u′ε+· · ·)2+· · ·].

(6.12)
Equating powers of ε gives the same equations, and these are solved recursively
the same way.

6.2 Problems

There is at least one case when one can evaluate Taylor coefficients to all orders.
Say that x is a fixed parameter and one wants to solve

u = x+ tg(u) (6.13)

for u as a function of t. When t = 0 the solution is u = x. The Lagrange
expansion says that for arbitrary n ≥ 1 we have

dnu

dtn
|t=0=

dn−1

dxn−1
g(x)n. (6.14)
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So the expansion to all orders is

u = x+ tg(x) +
t2

2
d

dx
g(x)2 +

t3

6
d2

dx2
g(x)3 + · · ·+ tn

n!
dn−1

dxn−1
g(x)n + · · · . (6.15)

1. Let w = g(u). Show that the equation becomes

w = g(x+ wt). (6.16)

2. Show that the function w is the solution of the partial differential equation

∂w

∂t
= w

∂w

∂x
(6.17)

with initial condition w = g(x) at t = 0.

3. Prove the conservation laws

∂wn

∂t
=

n

n+ 1
∂wn+1

∂x
. (6.18)

4. Prove that for n ≥ 1 we have

∂n−1w

∂tn−1
=

1
n

∂n−1

∂xn−1
wn. (6.19)

5. Prove that at t = 0

w = g(x)+
t

2
d

dx
g(x)2+

t2

6
d2

dx2
g(x)3+ · · ·+ tn−1

n!
dn−1

dxn−1
g(x)n+ · · · . (6.20)

6. Use u = x+ tw to prove the Lagrange expansion.

Note: The partial differential equation has a physical interpretation. If
v = −w, then the equation is

∂v

∂t
+ v

∂v

∂x
= 0 (6.21)

with initial condition v = h(x) at time zero. This is the equation for the velocity
of a gas of particles moving freely in one dimension. The motion of a particle
moving with the gas is given by

dx

dt
= v. (6.22)

The acceleration of a particle is

dv

dt
=
∂v

∂t
+
dx

dt

∂v

∂x
= 0 (6.23)

That is why it is considered free particle motion. Since v is constant along
particle paths x = x0 + vt, we have that v at arbitrary x, t is given in terms of
the initial v = h(x0) at time zero by v = h(x0) = h(x− vt). So the solution of
the equation is

v = h(x− vt). (6.24)
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6.3 The implicit function theorem: systems

We can take F (u, ε) = 0 to be a system of n equations for n variables u and an
extra variable ε. Or more generally we can take F (u, ε) to be a function of u
and ε, where u ranges over a region U in some Banach space E. Then F (u, ε)
takes values in a Banach space E′. The parameter ε is still real.

We shall often abbreviate the function by F . Let Fu be the partial derivative
of F as a function of u. In the case of a system this is the n by n matrix of
partial derivatives of the components of F with respect to the components of u.
More generally, it is a function on U with values that are linear transformations
from E to E′.

The assumption for the implicit function theorem is that F (u0, 0) = 0 and
the partial derivative Fu(u0, 0) has a bounded inverse. There are some other
technical assumptions. The conclusion is that the equation

F (u, ε) = 0 (6.25)

defines u as a function of ε for ε sufficiently near 0, in such a way that ε = 0 is
mapped into u0.

For practical calculations one wants to compute higher derivatives u(n) as a
function of ε. These are used in the Taylor expansion

u =
∞∑

n=0

u(n)

n!
εn. (6.26)

In first order we have
Fuu

(1) + Fε = 0 (6.27)

which gives the first order result

u(1) = −F−1
u Fε. (6.28)

Note that Fε has values in E′. On the other hand, F−1
u has values that are

linear transformation from E′ to E. So the right hand side has values in E, as
it must. Usually we are interested in evaluating this expression at u = u0 and
ε = 0.

The second order result is obtained by differentiating the first order equation.
This gives

Fuu
(2) + Fuu(u(1), u1)) + 2Fuεu

(1) + Fεε = 0. (6.29)

Thus the result of second order perturbation theory is that

u(2) = −F−1
u [Fuu(u(1), u1)) + 2Fuεu

(1) + Fεε]. (6.30)

Note that Fuu has values that are bilinear functions from E × E to E′. On
the other hand, Fuε has values that are linear functions from E to E′. Again
the right hand side has values in E. Again we are interested in evaluating this
expression at u = u0 and ε = 0.
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The general pattern is this. The nth derivative is given by

Fuu
(n) +Rn = 0 (6.31)

Differentiate again. This gives

Fuu
(n+1) + [Fuuu

(1) + Fuε]u(n) + [Rnuu
(1) +Rnε] = 0. (6.32)

Thus at every stage one only has to invert the first derivative Fu.

6.4 Nonlinear differential equations

Let us look at the simplest non-linear differential equation

Lu = εg(u). (6.33)

Here L is the restriction of a linear operator to satisfy an inhomogeneous bound-
ary condition. For example, we could have L = ∂/∂t+1 acting on functions with
u(0) = 1. When ε = 0 there is a solution u = u0. In the example u0(t) = e−t.

The derivative of L is L0, where L0 is a linear operator with zero boundary
conditions. For instance, we could have L0 = ∂/∂t+1 acting on functions h with
h(0) = 0. Thus the first order perturbation equation is L0uε = g(u) + εg′(u)uε.
The second order equation is L0uεε = 2g′(u)uε+ terms with ε. One can continue
in this way. Thus the hierarchy of equations begins Lu0 = 0, L0uε = g(u0),
L0uεε = 2g′(u0)uε.

It is possible to think of this in another way. Write u = u0 + w. Then the
equation Lu = εg(u) becomes L0w = εg(u), where L0 is the operator defined
with zero boundary conditions. Suppose that L0 has an inverse. Then

u = u0 + εL−1
0 g(u). (6.34)

This is very close in form to the scalar equation examined in the first two
sections.

This equation may be solved by the usual procedure. The first derivative
is uε = L−1

0 g(u) + εL−1
0 g′(u)uε. The second derivative is uεε = 2L−1

0 g′(u)uε +
εL−1

0 g′(u)uεε + εL−1
0 [g′′(u)u2

ε ]. The third derivative is uεεε = 3L−1
0 [g′′(u)u2

ε ] +
3L−1

0 [g′(u)uεε] + ε times other junk. Evaluate these at ε = 0, that is, at u = u0.
This gives

uε = L−1
0 g(u0), (6.35)

and
uεε = 2L−1

0 [g′(u0)L−1
0 g(u0)], (6.36)

and

uεεε = 3L−1
0 [g′′(u0)(L−1

0 (g(u0))2] + 6L−1
0 [g′(u0)L−1

0 (g′(u0)L−1
0 g(u0))]. (6.37)

Notice how the linear operators occur in various places, making it impossible to
do the simplification that we found in the scalar case.
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6.5 A singular perturbation example

In quantum mechanics one often wants to solve a problem of the form

− h̄2

2m
u′′ + v(x)u = λu. (6.38)

Here v(x) is a given real function. In many contexts λ plays the role of an
eigenvalue parameter. The constant m > 0 is fixed. The constant h̄ > 0 is the
perturbation parameter.

The characteristic feature of this problem is that the zero order perturbation
is not apparent. Thus setting h̄ = 0 it is not clear that there will be a solution
at all.

The resolution of this problem is to write the equation in new variables. For
simplicity think of the case when λ > v(x). Thus

u = Aei S
h̄ . (6.39)

The equation becomes

A

[
1

2m
(S′)2 + v(x)− λ

]
=

h̄2

2m
A′′ (6.40)

together with
2A′S′ +AS′′ = 0. (6.41)

Now we can recognize the h̄ = 0 limit as

1
2m

(S′)2 + v(x) = λ. (6.42)

The other equation may be written

(A2S′)′ = 0. (6.43)

These equations have a physical interpretation. The function S′ is a velocity
that depends on position. The first equation is the classical equation for con-
servation of energy. The function A2 is a density. The second equation is the
conservation law that says that the current A2S′ is constant in space. Of course
these equations are only valid in the zero order approximation, which in this
case is called the WKB approximation.

This approximation is relevant to a heuristic understanding of Schrödinger
operators of the form

H = − h̄2

2m
d2

dx2
+ v(x). (6.44)

The Hilbert space is the space of L2 functions on the line. If v(x) is bounded
below, then one expects this to be a well-defined self-adjoint operator. In fact,
for λ < 0 sufficiently negative, one expects (H − λI)−1 to be a well-defined
bounded self-adjoint operator. The reason is that the solutions of the differential
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equation either decay rapidly at infinity or grow rapidly at infinity. The Green’s
function is defined by the solutions that decay rapidly at infinity. There is a
solution of Hu = λu that is in L2 at −∞ and by another solution of the same
equation that is in L2 at +∞. The two solutions are matched by a jump
condition to form the kernel of the integral operator.

When v(x) is very badly unbounded below, then something quite different
happens. Let us look at the example of v(x) ∼ εx2n with ε < 0. According to
the WKB approximation, we have S′(x) ∼ ±|x|n. It follows that A2 ∼ |x|−n.
Thus it is plausible that if n > 1 then every solution is in L2. These solutions
are highly oscillatory and decrease at infinity at a moderate rate.

If this is indeed the case, then the operator H is not self-adjoint. The
problem is that when one wants to define a Green’s function, there are two
linearly independent solutions, and they are both in L2 at ±∞. So there is no
boundary condition at infinity that determines the Green’s function in a natural
way.

6.6 Eigenvalues and eigenvectors

We have an operator H0 + εV . We are interested in an isolated eigenvalue λ
of multiplicity 1. The corresponding eigenvector is p. It is only determined up
to a constant multiple. The adjoint operator has eigenvalue λ̄ with eigenvalue
q. It is convenient to choose p and q so that the inner product (q, p) = 1. The
associated projection onto the eigenspace is P satisfying P 2 = P . It is given by
Pu = (q, u)p. Thus p is an eigenvector with

(H0 + εV − λ)p = 0. (6.45)

Furthermore, (q, (H0 + εV − λ)u) = 0 for all u. We also have the reduced
resolvent S with SP = PS = 0 and S(H0 + εV − λI) = 1− P .

If we indicate the dependence on ε explicitly, then the equation we want to
solve is

(H0 + εV − λ(ε))p(ε) = 0. (6.46)

We would like to find the perturbation expansion in terms of the λ and p and q
and S associated with ε = 0.

The following discussion is meant to establish two formulas, one for the
eigenvalue and one for the eigenvector (not normalized). The first is the formula
for the eigenvalue to second order

λ(ε) = λ+ (q, V p)ε− (q, V SV p)ε2 + · · · . (6.47)

The other is the formula for the (unnormalized) eigenvector to second order

p(ε) = p− SV pε+ [SV SV p− S2V p(q, V p)]ε2 + · · · . (6.48)

These formulas are so important that they should be memorized, at least the
one for the eigenvalues.
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We now proceed to the derivations. Differentiate the eigenvector equation
with respect to ε. This gives

(H0 + εV − λ)ṗ− λ̇p+ V p = 0. (6.49)

Now take the inner product with q on the left. This gives

λ̇ = (q, V p). (6.50)

This gives the first order change of the eigenvalue. That is,

λ(ε) = λ+ (q, V p)ε · · · . (6.51)

Next apply I − P on the left. This gives

(I − P )(H0 + εV − λ)ṗ+ (I − P )V p = 0, (6.52)

or
(I − P )ṗ = −SV p. (6.53)

Thus
ṗ = −SV p+ c1p. (6.54)

Notice that the derivative of the eigenvector is not uniquely determined. It
ordinarily harmless to take c1 = 0. This gives the first order change of the
eigenvector

p(ε) = p+ [−SV p+ c1p]ε. (6.55)

Now differentiate again. This gives

(H0 + εV − λ)p̈+ λ̈p+ 2V ṗ− 2λ̇ṗ = 0. (6.56)

Take the inner product with q on the left. This gives

λ̈+ 2(q, V ṗ)− 2λ̇(q, ṗ), (6.57)

or
1
2
λ̈ = −(q, V SV p). (6.58)

This gives the second order change of the eigenvalue. That is,

λ(ε) = λ+ (q, V p)ε− (q, V SV p)ε2 + · · · . (6.59)

Now apply 1− P on the left. This gives

(1− P )(H0 + εV − λ)p̈+ 2(1− P )V ṗ− 2λ̇(1− P )ṗ = 0. (6.60)

Thus
1
2
(1− P )p̈ = SV SV p− 1

2
c1SV p− S2V p(q, V p). (6.61)
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Hence
1
2
p̈ = SV SV p− S2V p(q, V p)− 1

2
c1SV p+

1
2
c2p. (6.62)

This gives the second order change of the eigenvector

p(ε) = p+ [−SV p+ c1p]ε+ [SV SV p− S2V p(q, V p)− 1
2
c1SV p+

1
2
c2p]ε2 + · · · .

(6.63)
Now let us change notation. We will think of a basis pn for the Hilbert space

and a dual basis qm, with (qm, pn) = δmn. We write q∗m for the functional that
takes u to (qm, u). Then the various operators have special forms. We take the
pn to be the eigenvectors of H0. Thus H0pn = λnpn. The operator Pn = pnq

∗
n

is the spectral projection associated with the nth eigenvalue λn of H0. The
operator Sn =

∑
j 6=n pjq

∗
j /(λk − λn).

Then the second order expression for the eigenvalue can be written as

λn(ε) = λn + (qn, V pn)ε− (qn, V SnV pn)ε2 + · · · . (6.64)

Even more explicitly, this is

λn(ε) = λn + (qn, V pn)ε−
∑

j 6=n

(qn, V pj)
1

λj − λn
(qj , V pn)ε2 + · · · . (6.65)

The second order expression for the eigenvector pn(ε) is (taking c1 = 0)

pn(ε) = pn−SnV pnε+[SnV SnV pn−S2
nV pn(qn, V pn)+

1
2
c2pn]ε2 + · · · . (6.66)

If H0 has discrete spectrum, then (leaving out the last term) this may be written

pn(ε) = pn −
∑

j 6=n

1
λj − λn

(qj , V pn)pjε (6.67)

+
∑

j 6=n

1
λj − λn

[
∑

k 6=n

(qj , V pk)
1

λk − λn
(qk, V pn)− 1

λj − λn
(qj , V pn)(qn, V pn)]pjε

2 + · · · .

6.7 The self-adjoint case

In the self-adjoint case q = p and it is natural to normalize so that (p(ε), p(ε)) = 1
to second order. This gives c1 = 0 and

c2 = −(p, V S2V p). (6.68)

So in this case
λ(ε) = λ+ (p, V p)ε− (p, V SV p)ε2 + · · · . (6.69)

and

p(ε) = p− SV pε+ [SV SV p− S2V p(p, V p)− 1
2
(p, V S2V p)p]ε2 + · · · . (6.70)
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If λ = λn and p = pn, we can write the coefficient c2 even more explicitly as

c2 = −
∑

j 6=n

(pn, V pj)
1

(λj − λn)2
(pj , V pn). (6.71)

Example: Take

H0 =
[

1 0
0 −1

]
(6.72)

and

V =
[

0 1
1 0

]
. (6.73)

The eigenvalues are λ(ε) = ±√1 + ε2. However it is interesting to compare this
exact result with the result of second order perturbation theory.

Let us look at the perturbation of the eigenvalue −1 of H0. For this eigen-
value the spectral projection is

P =
[

0 0
0 1

]
(6.74)

and the eigenvector p is the second column of P . The reduced resolvent is

S =
[

1
1−(−1) 0

0 0

]
=

[
1
2 0
0 0

]
. (6.75)

So the coefficient in second order perturbation theory is

−(p, V SV p) = −1
2
. (6.76)

Thus
λ(ε) = −1− 1

2
ε2 + · · · . (6.77)

6.8 The anharmonic oscillator

In this section we let

H0 =
1
2

[
d2

dx2
+ x2 − 1

]
. (6.78)

The perturbation V is multiplication by

v(x) = εx4. (6.79)

Let

A =
1√
2

(
x+

d

dx

)
(6.80)

and

A∗ =
1√
2

(
x− d

dx

)
. (6.81)
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Then AA∗ = A∗A+ I and H0 = A∗A. Furthermore, the solution of Au0 = 0 is

u0(x) =
1
4
√
π
e−

x2
2 . (6.82)

Define for each n = 0, 1, 2, 3, . . . the vector

un =
1
n!
A∗nu0. (6.83)

We have A∗um =
√
m+ 1um+1 and Aum =

√
mum−1. Then the un form an

orthonormal basis consisting of eigenvectors of H0. Furthermore,

H0un = nun. (6.84)

Say that we are interested in a particular n. The corresponding reduced
resolvent Sn is given by

Snum =
1

m− n
um (6.85)

for m 6= n, and by Snun = 0.
The operator multiplication by x may be expressed in terms of A and A∗ by

x =
1√
2
(A+A∗). (6.86)

This allows us to calculate the matrix elements of x. These are given by

(um+1, xum) =
1√
2
(um+1, A

∗um) =
1√
2

√
m+ 1 (6.87)

and
(um−1, xum) =

1√
2
(um−1, Aum) =

1√
2

√
m. (6.88)

So each transition is to a neighboring natural number.
As a warmup, let us compute the matrix element (un, x

2un). This is the sum
of two possible transition paths, one up-down and one down-up. The result is
(n+ 1)/2 + (n/2) = (2n+ 1)/2.

To compute the first order perturbation coefficient (un, x
4un). we need to

look at all transitions that go from n to n in 4 steps. After two steps one is
either at un−2, at un, or at un+2. So

(un, x
4un) = (un, x

2un−2)2 + (un, x
2un)2 + (un, x

2un+2)2. (6.89)

This is

(un, x
4un) =

n(n− 1)
4

+ (
2n+ 1

2
)2 +

(n+ 1)(n+ 2)
4

=
6n2 + 6n+ 3

4
. (6.90)

Higher order perturbations may be computed with more labor. It turns out
that the perturbation series in ε does not converge. Some intuition for this is
provided by the observation that H0+εV is not a self-adjoint operator for ε < 0.
So for ε < 0 the eigenvalue problem is meaningless. On the other hand, if the
Taylor series had a positive radius of convergence, then it would converge also
for some values of ε < 0.


