The University of Arizona

a-Numbers in Artin-Schreier Covers

a-Numbers in Artin-Schreier Covers

Series: Algebra and Number Theory Seminar
Location: ENR2 S395
Presenter: Jeremy Booher, U of A

 Let f : Y -> X be a branched Z/pZ-cover of smooth, projective, geometrically connected curves over a perfect field of characteristic p>0. We investigate the relationship between the a-numbers of Y and X and the ramification of the map f. This is analogous to the relationship between the genus (respectively p-rank) of Y and X given the Riemann-Hurwitz (respectively Deuring--Shafarevich) formula. Except in special situations, the a-number of Y is not determined by the a-number of X and the ramification of the cover, so we instead give bounds on the a-number of Y. We provide examples showing our bounds are sharp. The bounds come from a detailed analysis of the kernel of the Cartier operator.

Department of Mathematics, The University of Arizona 617 N. Santa Rita Ave. P.O. Box 210089 Tucson, AZ 85721-0089 USA Voice: (520) 621-6892 Fax: (520) 621-8322 Contact Us © Copyright 2018 Arizona Board of Regents All rights reserved