Algebra Qualifying Examination

August 2006

Do either one of nA or nB for 1 \leq n \leq 5. Justify all your answers. Say what you mean, mean what you say.

1A A finite group is said to be a quasi-p group if it is generated by its p-sylow subgroups. Give an example of a non-solvable group G which is a quasi 2, quasi-3 and a quasi-5 group simultaneously.

1B Suppose that G is a group of order p^aq where p, q are prime numbers. Show that G is solvable.

2A The ideal $(7, X^3 + 2X + 1) \subset \mathbb{Z}[X]$ is a prime ideal. Prove or disprove.

2B Show that the ideal $(3, X^3 - X^2 + 2X - 1)$ in $\mathbb{Z}[X]$ is not principal.

3A Show that a 2×2-matrix M with entries in \mathbb{Q} and with positive determinant can be written as

$$M = SB$$

where S is a 2×2-matrix with integer entries and determinant one and B is an upper triangular matrix with entries in \mathbb{Q}.

3B Let $G = SL_3(\mathbb{F}_7)$ be the group of 3×3 matrices with determinant one and entries in \mathbb{F}_7 (here \mathbb{F}_7 is the field with seven elements). Show that the set of upper triangular matrices with ones on the diagonal is a subgroup of G and that it is a 7-Sylow subgroup of G.

4A An element r of a ring R is said to be nilpotent if $r^n = 0$ for some $n \geq 1$. Now let R be a commutative ring and let $R[X]$ be the ring of polynomials in X with coefficients in R. The a polynomial

$$a_0 + a_1X + \ldots + a_nX^n \in R[X]$$

is nilpotent in $R[X]$ if and only if a_0, a_1, \ldots, a_n are nilpotent in R.

1
4B Suppose $A = \mathbb{C}[t^2, t^3] \subset \mathbb{C}[t]$ (here A is the subset consisting of all complex coefficient polynomials in t^2, t^3. For instance $t^4 + 2t^6$ is in A but $t^2 + t + 1$ is not). Show that A is a Noetherian ring.

5A Let K be the field obtained by attaching to \mathbb{Q} all the roots of $X^p - 2 = 0$ where $p \geq 3$ is a prime number. Calculate the Galois group of K/\mathbb{Q}.

5B Let $\zeta = \cos(\pi/6) + i \sin(\pi/6) \in \mathbb{C}$. Calculate the degree of $\mathbb{Q}(\zeta)/\mathbb{Q}$ and find the minimal polynomial of ζ over \mathbb{Q}.