ALGEBRA QUALIFYING EXAMINATION

AUGUST 2008

Do either one of \(nA \) or \(nB \) for \(1 \leq n \leq 5 \). Justify all your answers. Say what you mean, mean what you say. Any ring denoted \(R \) is a commutative ring with identity.

1A. Let \(A \in M_n(\mathbb{R}) \) be a positive definite symmetric matrix. Prove that there exists a unique positive definite symmetric \(B \in M_n(\mathbb{R}) \) such that \(B^2 = A \).

1B. State and prove the Vandermonde determinant formula.

2A. Let \(Q \) be the quaternion group \(\{\pm 1, \pm i, \pm j, \pm k\} \) of order 8. Prove that there is a homomorphism \(\text{Aut}(Q) \to S_3 \) whose kernel is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \).

2B. Let \(n > 2 \) be an integer and let \(H \) be a proper subgroup of \(A_n \). Prove that \([A_n : H] \geq n \). Can this inequality be improved for any value of \(n \)?

3A. Prove or disprove: if \(R \) is a unique factorization domain, then the GCD of two elements \(a, b \in R \) is always expressible as \(\lambda a + \mu b \) for some \(\lambda, \mu \in R \).

3B. Let \(R = \mathbb{C}[0,1] \) be the ring of continuous complex-valued functions on the interval \([0,1]\). Let \(I_{\frac{1}{2}} \) be the elements of \(R \) with the property that \(f(\frac{1}{2}) = 0 \). Show that \(I_{\frac{1}{2}} \) is a maximal ideal of \(R \). Can you identify the quotient \(R/I_{\frac{1}{2}} \) with a field you know? Explain why \(R \) has an uncountable number of maximal ideals.

4A. Find (with proof) the smallest positive integer \(n \) such that an \(n^\circ \) angle is constructible by straightedge and compass.

4B. Let \(K = \mathbb{C}(t) \) be the field of rational functions in one variable \(t \) over the field \(\mathbb{C} \) of complex numbers. Let \(\omega \) be a non-trivial cube root of unity. Let \(\sigma, \tau \) be automorphisms of \(K \) fixing \(\mathbb{C} \) such that \(\sigma(t) = \omega t \) and \(\tau(t) = t^{-1} \). Show that the subgroup \(\langle \sigma, \tau \rangle \subset \text{Aut}(K) \) is isomorphic to \(S_3 \), and that the fixed field \(K^{\langle \sigma, \tau \rangle} \) is equal to \(\mathbb{C}(t^3 + t^{-3}) \).

5A. Let \(V \) be a vector space over a field \(K \), and let \(e, f \in V \) be two linearly independent vectors. Prove that the element \(e \otimes f + f \otimes e \in V \otimes_K V \) is not equal to any basic tensor of the form \(v \otimes w \) with \(v, w \in V \).

5B. An abelian group has generators \(a, b, c, d \) and defining relations \(2a - 2c = 0 \), \(4b - 8d = 0 \), \(6a + 4b + c - d = 0 \), \(2a + 4b + 5c - d = 0 \). Express the group as a direct sum of cyclic groups.