ALGEBRA QUALIFYING EXAMINATION

AUGUST 2021

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers.
1A. Let A and B be two nilpotent $n \times n$ matrices with entries in \mathbb{C}.
a.) If $n \leq 6$ and A and B have the same minimal polynomial and the same rank, prove that A and B are similar.
b.) Give an example of two nilpotent 7×7 matrices with the same minimal polynomial and rank which are not similar.

1B. Give a concrete example of a real matrix A with $A^{5}=I$ and A not diagonalizable over \mathbb{R}. Show that A is diagonalizable over \mathbb{C}.
2A. Let G be a simple group of order 168 .
a.) If H is a proper subgroup of G, prove that $[G: H] \geq 7$.
b.) Prove that G has no elements of order 21. Hint: If $g \in G$ has order 21, then $P:=\left\langle g^{7}\right\rangle$ is a Sylow 3-subgroup of G with $g \in N_{G}(P)$.

2B. Suppose that G is a finite group that acts faithfully and transitively on a finite set S. If $G_{a}:=\operatorname{Stab}_{G}(a)$ for $a \in S$ show that there does not exist a nontrivial $N \triangleleft G$ with $N \leq G_{a}$.
3A. Let R be an integral domain with field of fractions F. We say that R is a valuation ring if for every nonzero $x \in F$, either $x \in R$ or $x^{-1} \in R$.
a.) If R is a valuation ring and I and J are ideals in R, prove that either $I \subseteq J$ or $J \subseteq I$. Thus, the ideals in a valuation ring are totally ordered.
b.) Conversely, prove that if the ideals of R are totally ordered by inclusion as in a.), then R is a valuation ring.

3B. Show that any principal ideal of $\mathbb{Z}[X]$ is not a maximal ideal.
4 A. Let K be the splitting field of $x^{20}-1$ over \mathbb{Q}.
a.) Determine $\operatorname{Gal}(K / \mathbb{Q})$, and prove that your answer is correct.
b.) Determine with proof the number of distinct subfields $E \subseteq K$ containing \mathbb{Q}, for each possible degree $[E: \mathbb{Q}]$.
4B. Show that the polynomial $2 x^{5}-10 x+5 \in \mathbb{Q}[x]$ is not solvable by radicals.
5 A . Let A be the abelian group with presentation

$$
A:=\langle x, y, z: 4 x+7 y+3 z, 7 x-8 y+6 z,-7 x+20 y-6 z\rangle .
$$

Express A as a direct product of cyclic groups of prime power order.
5B. Determine all noncommutative, semisimple rings with 144 elements up to isomorphism.

