ALGEBRA QUALIFYING EXAMINATION

JANUARY 2009

Do either one of \(nA \) or \(nB \) for \(1 \leq n \leq 5 \). Justify all your answers. Say what you mean, mean what you say. Any ring denoted \(R \) is a commutative ring with identity.

1A. Let \(M \) be a \(3 \times 3 \) matrix with entries in \(\mathbb{C} \) and suppose that for every \(3 \times 3 \) matrix \(A \) with complex entries, we have \(\text{Trace}(MA) = 0 \). Then show that \(M = 0 \).

1B. Let \(m \) be a positive integer and suppose that \(c_1, \ldots, c_n \in \mathbb{Q} \) have the property that \(\sum_{k=1}^{n} c_k k^j = m^j \) for each \(j = 0, \ldots, n-1 \). Use Cramer’s rule to compute \(c_n \).

2A. Let \(G \) be a finite simple group. Let \(p \) be a prime dividing its order. Prove or disprove the following statement: \(G \) is generated by its \(p \)-Sylow subgroups.

2B. Prove that the additive groups \(\mathbb{Z}[1/2] \) and \(\mathbb{Z}[1/3] \), consisting of rational numbers whose denominators are powers of 2 and 3 respectively, are not isomorphic.

3A. (a) Give an example of a UFD that is not a PID.
(b) Let \(R \) be a UFD, and let \(P \) be any nonzero prime ideal of \(R \) such that there are no prime ideals lying strictly between \((0)\) and \(P \). Prove that \(P \) is principal.

3B. Suppose \(R \) is a commutative ring with the property that for every \(x \in R \), we have \(x^2 = x \). Show that (1) \(R \) has characteristic two, (2) every prime ideal \(P \) of \(R \) is maximal with quotient \(R/P \simeq \mathbb{Z}/2 \).

4A. Let \(f(x) = x^3 - 7 \in \mathbb{Q}[x] \). Show that \(f \) is an irreducible polynomial and compute its Galois group.

4B. Give an example (with proofs) of a field \(K/\mathbb{Q} \) such that \(\text{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/4 \mathbb{Z} \times \mathbb{Z}/2 \mathbb{Z} \).

5A. Here is a list of five \(\mathbb{R} \)-algebras: \(\mathbb{R}^4 \), \(\mathbb{R}^2 \times \mathbb{C} \), \(\mathbb{C} \times \mathbb{C} \), \(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \), \(\mathbb{R}[x]/(x^4-1) \). This list contains two pairs of isomorphic \(\mathbb{R} \)-algebras, and one “odd one out”. Determine (with proof) the two pairs of isomorphic \(\mathbb{R} \)-algebras.

5B. Prove or disprove: the map \(G \mapsto Z(G) \) which sends a group \(G \) to its center \(Z(G) \) can be made into an isomorphism preserving functor from the category of groups to itself.