ALGEBRA QUALIFYING EXAMINATION

JANUARY 2022

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers.
1 A . An 11×11 matrix over \mathbb{C} satisfies $A^{2}=0$. Determine the largest possible rank that such a matrix can have, and give an explicit example illustrating that this maximal rank occurrs.
1B. Let V be a finite dimensional \mathbb{C}-vector space and let T, U be linear maps from V to V. Show that if $T U=U T$ then T and U have a common eigenvector.
2A. Let G be a simple group of order $17971200=2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$ and H a proper subgroup of G. Prove that $[G: H] \geq 14$.
2B. Let G be a group of order 24 and assume no Sylow subgroup of G is a normal subgroup of G. Show that G is isomorphic to S_{4}.
3A. Let R be a commutative ring of finite cardinality, and I_{1}, \ldots, I_{k} proper ideals of R that are pairwise comaximal (i.e. $I_{j}+I_{k}=(1)$ for all $j \neq k$). If p is the smallest prime dividing $|R|$, prove that $|R| \geq p^{k}$. Hint: Consider the quotient $R /\left(I_{1} I_{2} \cdots I_{k}\right)$.

3B. Show that for any prime p congruent to 1 modulo 4 the ring $\mathbb{Z}[\sqrt{p}]$ is not a unique factorization domain.

4 A . Let $f \in \mathbb{Q}[X]$ be an irreducible polynomial of prime degree $p=\operatorname{deg}(f)$ with splitting field K over \mathbb{Q}. If $\alpha \neq \beta$ are roots of f in K with $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)$, prove that $K=\mathbb{Q}(\alpha)$, and that $\operatorname{Gal}(K / \mathbb{Q}) \simeq \mathbb{Z} / p \mathbb{Z}$.
4B. Let K be the splitting field of the polynomial $X^{4}+1$ over \mathbb{Q}. Compute the Galois group $\operatorname{Gal}(K / \mathbb{Q})$.
5A. Let G be the abelian group with generators x, y, z subject to the relations

$$
-36 x+8 y-50 z=18 x-4 y+28 z=36 x-6 y+48 z=0 .
$$

Express G as a direct product of cyclic groups of prime power order.
5B. Let A be a finite dimensional, semisimple \mathbb{C}-algebra and let M be a finitely generated A-module. Prove that M has only finitely many A-submodules if and only if M is a direct sum of pairwise nonisomorphic, simple A-modules.

