ALGEBRA QUALIFYING EXAMINATION

JANUARY 2023

Do either one of $n A$ or $n B$ for $1 \leq n \leq 5$. Justify all your answers.
1A. A complex $n \times n$ matrix A is called normal, if $\bar{A}^{t} A=A \bar{A}^{t}$. Let A_{1}, \ldots, A_{k} be complex, normal $n \times n$ matrices such that $A_{i} A_{j}=A_{j} A_{j}$ for all $i, j=1, \ldots, k$. Show that there exists a unitary $n \times n$ matrix U such that for all $i=1, \ldots, k$ the matrix $U^{-1} A_{i} U$ is a diagonal matrix.
1 B. Let $A \in \mathrm{GL}_{n}(\mathbb{C})$, and suppose A has finite order. Prove A is diagonalizable.
2A.
(1) Show that a group of order $2^{n} \cdot 5$ for $n \in \mathbb{N}$ is solvable.
(2) Give an example of a non-nilpotent group of order 72.

2B. Let G be a finite group and p a prime number. Let H be the intersection of all Sylow p-subgroups of G. Prove that H is normal in G. Further, if N is any normal p-subgroup of G, prove that N is a subgroup of H.

3A.
Show that the ring $\mathbb{Z}[\sqrt{5}]$ is not a principal ideal domain.
3B. Let \mathbb{F}_{3} denote the finite field with three elements. Let $K=\mathbb{F}_{3}(\alpha)$, where α is a root of $x^{2}+1$.
(1) Find a generator β of the multiplicative group of K and describe it in terms of the \mathbb{F}_{3}-basis $\{1, \alpha\}$ of K.
(2) Show that $x^{4}+1$ splits in K by writing its roots in terms of β.

4 A. Determine a field K containing \mathbb{Q} such that the Galois group of K over \mathbb{Q} is cyclic of order 3.

4B. Let $f \in \mathbb{Q}[x]$ be an odd degree, irreducible polynomial with abelian Galois group. Prove that all the roots of f are real.
5 A . Determine all semisimple rings of size 1296 up to isomorphism. How many are commutative?

5B. Suppose

$$
0 \longrightarrow N_{1} \longrightarrow M \longrightarrow N_{2} \longrightarrow 0
$$

is an exact sequence of R-modules. Prove that if N_{1} and N_{2} are finitely generated then M is finitely generated. Give a counterexample to the converse; explicitly describe the ring R and modules involved in your example.

