Please show all your work; in particular, explain clearly all steps (such as interchanging limits) by quoting known theorems, and, when appropriate, by verifying that their assumptions are satisfied.

1. Show that \(f_n(x) = \sqrt{x^2 + 1/n} \) converges to \(f(x) = |x| \) uniformly on \(\mathbb{R} \).

2. Let \(X \) be a measure space with finite measure \(\mu(X) < \infty \). A sequence of measurable functions \(f_n \) is said to converge to zero in measure if for each \(\varepsilon > 0 \) the measure \(\mu(\{x \mid |f_n(x)| \geq \varepsilon\}) \to 0 \) as \(n \to \infty \).
 a. Show that if \(|f_n| \land 1 \) (the minimum of \(|f_n| \) and 1) converges to zero in \(\mathbb{L}^1 \), then it converges to zero in measure.
 b. Show that if \(f_n \) converges to zero in measure, then \(|f_n| \land 1 \) converges to zero in \(\mathbb{L}^1 \).

3. Let \(f(x) > 0 \) be in \(\mathbb{L}^1 \) on the line with respect to Lebesgue measure. Let \(g(x) = \sum_{n=-\infty}^{+\infty} f(x+n) \). Show that if \(g \) is in \(\mathbb{L}^1 \), then \(f = 0 \) almost everywhere.

4. Show that
 \[
 \int_{-\infty}^{+\infty} |f(x)| \, dx \leq \sqrt{2\pi} \left(\int_{-\infty}^{+\infty} |f(x)|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{-\infty}^{+\infty} x^2 |f(x)|^2 \, dx \right)^{\frac{1}{2}}.
 \]
 Hint: Let \(|f(x)| = 1/\sqrt{1 + a^2 x^2} \cdot \sqrt{1 + a^2 x^2} |f(x)| \). To get the result as stated you may want (at the end) to make an optimal choice of \(a > 0 \).

5. The functions \(1, x, x^2, x^3, \ldots \) are each in \(\mathbb{L}^2([0, 1]) \), where \([0, 1]\) is the unit interval equipped with Lebesgue measure. Let \(\phi_0, \phi_1, \phi_2, \phi_3, \ldots \) be the orthonormal family generated from these by the Gram-Schmidt process. Explain why this is a maximal orthonormal family.

6. a. Let \(X \subseteq \tilde{X} \) be metric spaces with metrics that coincide on \(X \). Suppose that \(X \) is a dense subspace of \(\tilde{X} \). Let \(Y \) be a complete metric space. Let \(f : X \to Y \) be a uniformly continuous map of metric spaces. Show that there is a uniformly continuous map \(\tilde{f} : \tilde{X} \to Y \) that extends \(f \). (Be sure to prove that the map is a function: one input gives only one output.)
 b. Give an example to show that there is no such result on extension by continuity for the case when \(f \) is merely known to be continuous.

7. a. Consider a step function on \(\mathbb{R} \) that is the indicator function of an interval \([a, b]\). This is clearly an element of \(\mathbb{L}^1(\mathbb{R}) \) (where the real line \(\mathbb{R} \) is equipped with Lebesgue measure), and it has \(\mathbb{L}^1(\mathbb{R}) \) norm \(b - a \). Calculate its Fourier transform and show that it is in \(\mathbb{C}_0(\mathbb{R}) \), the space of functions that are continuous and vanish at infinity. Calculate the supremum norm of the Fourier transform.
 b. Use the first part to give a proof that the Fourier transform of every function in \(\mathbb{L}^1(\mathbb{R}) \) is in \(\mathbb{C}_0(\mathbb{R}) \).