Analysis qualifying exam - August 2013

(1) Find

$$\lim_{n \to \infty} n^2 \int_0^\infty e^{-nx} \arctan(x) \, dx$$

and prove your answer. $(\arctan(x))$ is the inverse function for $\tan(x)$.)

(2) Let f_n be a sequence of continuous functions on \mathbb{R} which converge uniformly on \mathbb{R} to a continuous function f. Define

$$g_n(x) = \int_0^x f_n(t) dt, \quad g(x) = \int_0^x f(t) dt$$

For each of these statements, either prove it or disprove it by a counterexample.

- (a) g_n converges to g point-wise.
- (b) q_n converges to g uniformly on \mathbb{R} .
- (c) For all a < b, g_n converges to g uniformly on [a, b].

(3) Let AC([a, b]) be the set of absolutely continuous functions on the bounded interval [a, b], and define

$$K = \{f : f \in AC([a, b]), ||f||_2 \le 1, ||f'||_2 \le 1\}$$

Prove that the closure of K is compact in C([a, b]), the space of continuous functions on [a, b] with the sup norm.

(4) Prove that the linear operator A defined by the formula

$$Au(x) = \int_0^1 \frac{u(t)}{\sqrt{|x-t|}} dt$$

is bounded from $L^2([0,1])$ to $L^2([0,1])$. (The measure for $L^2([0,1])$ is Lebesgue measure.) Hint: $|x-t|^{-1/2} = |x-t|^{-1/4} |x-t|^{-1/4}$.

(5) Let (X, \mathcal{M}, μ) be a σ -finite measure space. Let f and g be non-negative functions in $L^1(X, \mathcal{M}, \mu)$. Define two new measures by

$$\mu_f(A) = \int_A f \, d\mu, \quad \mu_g(A) = \int_A g \, d\mu$$

for $A \in \mathcal{M}$.

- (a) Find a necessary and sufficient condition on f and g for μ_f to be absolutely continuous with respect to μ_g .
- (b) When μ_f is absolutely continuous with respect to μ_g , what is the Radon-Nikodym derivative of μ_f with respect to μ_g ?
- (6) Let λ_n be Lebesgue measure on \mathbb{R}^n , and let λ_1 be Lebesgue measure on \mathbb{R} . Let $f, g \in L^2(\mathbb{R}^n, \lambda_n)$, and assume $g \geq 0$. For $t \geq 0$ define $E_t = \{x \in \mathbb{R}^n : g(x) > t\}$. Prove that

$$\int_0^\infty \left[\int_{E_t} f(x) \, d\lambda_n(x) \right] \, d\lambda_1(t) = \int_{\mathbb{R}^n} f(x) g(x) \, d\lambda_n(x)$$