Analysis Qualifying Exam

PLEASE SHOW ALL YOUR WORK

Problem 1. For a measurable function $f:[0,1]\to I\!\!R$, let

$$g(x,y) = f(x) - f(\sqrt{y}).$$

Show that if $g(x,y) \in L^1([0,1] \times [0,1])$, then $f \in L^1([0,1])$.

Problem 2. Let $f: l^2(I\!\!N) \to I\!\!R^{I\!\!N}$ be defined by

$$f({x_n}) = {y_n}$$
 where $y_n = x_n x_{n+1}$.

- (a) Show that f maps $l^2(\mathbb{N})$ to $l^1(\mathbb{N})$.
- (b) Show that f is continuous. (Note that f is not linear.)

Problem 3. Let f_n be a sequence in $L^1(\mathbb{R})$ such that

$$\lim_{n\to\infty} \int_{\mathbb{R}} f_n(x)g(x)dx = g(0) \text{ for each } g \in C_0(\mathbb{R}).$$

(Here, $C_0(\mathbb{R})$ denotes the set of all continuous functions on \mathbb{R} vanishing at infinity.) Show that f_n is not Cauchy in $L^1(\mathbb{R})$.

Problem 4. Let $f: \mathbb{R} \to [0, \infty]$ be a Lebesgue measurable extended real valued function. Define a measure μ by

$$\mu(E) = \int_{E} f dx.$$

Show that μ is σ -finite if and only if $|f(x)| < \infty$ Lebesgue a.e.

Problem 5. Consider the function $f:(0,\infty)\times(0,\infty)\to\mathbb{R}$ defined by

$$f(x,y) = \sum_{n=1}^{\infty} \frac{1}{nx^2 + n^3x^{-2}y}.$$

Find the limit $g(y) := \lim_{x \to \infty} f(x, y)$ for y > 0, with a proof.

Problem 6. For A and B, subsets of \mathbb{R}^2 , define $A + B = \{x + y : x \in A \text{ and } y \in B\}$.

- (a) Let A and B be compact subsets of \mathbb{R}^2 . Show that A+B is compact.
- (b) Let A and B be closed subsets of \mathbb{R}^2 . Show that A+B is not necessarily closed.