ANALYSIS QUALIFYING EXAM

AUGUST 2021

Please show all of your work. GOOD LUCK!
(1) Evaluate

$$
\int_{0}^{1}\left(\frac{\ln (1-x)}{x^{2}}+\frac{1}{x}\right) d x
$$

Justify your steps. Hint: You may find using Taylor series useful.
(2) Let f be a real valued continuously differentiable function on the real line. Suppose that f^{\prime} is bounded, $f(0)=0$, and $f^{\prime}(0)=5$. Find

$$
\lim _{n \rightarrow \infty} n^{2} \int_{0}^{\infty} f(x) e^{-n^{2} x^{2}} d x
$$

Justify all steps.
(3) Let $f \in L^{2}([a, b])$ be real-valued. Show that
$\sqrt{\left(\int_{a}^{b} f(x)^{2} \cos (x) d x\right)^{2}+\left(\int_{a}^{b} f(x)^{2} \sin (x) d x\right)^{2}} \leq \int_{a}^{b} f(x)^{2} d x$.
Hint: One may, for example, write $f(x)^{2} \cos (x)=f(x) \cdot f(x) \cos (x)$.
(4) Let (X, \mathcal{M}, μ) be a finite measure space, and let $f(x)$ be a measurable function on X. Suppose that

$$
m(t)=\mu\{x:|f(x)|>t\}=\frac{1}{t^{4}}
$$

for $t>1$. Find all values of $p, 1 \leq p \leq \infty$ such that $f(x) \in L^{p}(X, \mu)$.
(5) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis of $L^{2}([0,1])$. For each $p>0$ and any $t \in[0,1]$, calculate

$$
\sum_{n=1}^{\infty}\left|\int_{0}^{t} s^{p} f_{n}(s) d s\right|^{2}
$$

(6) Let $f(x)=(\sin x) / x$. Define a measure μ on \mathbb{R} :

$$
\mu(X)=m(\{x: f(x) \in X\})
$$

for every Borel set X. Here m is the Lesbegue measure. Prove that μ is absolutely continuous with respect to m and find $(d \mu / d m)(3 / \pi)$. Here $d \mu / d m$ is the Radon-Nikodym derivative. Hint. $f(\pi / 6)=3 / \pi$.

