ANALYSIS QUALIFYING EXAM

Please show all of your work. GOOD LUCK!
(1) Let $f_{n}(x)$ be a sequence of differentiable functions on the interval $[0,1]$. Suppose that $f_{n}(x)$ converge to a function $f(x)$ uniformly on $[0,1]$ and that for every $x \in[0,1]$ the limit of $f_{n}^{\prime}(x)$ exists. Prove or give the counter example to the following statement: the function $f(x)$ is differentiable.
(2) Let $f(x)$ be a bounded, continuously differentiable function on $[0, \infty)$. Suppose that $f(0)=0$ and $f^{\prime}(0)=2$. Evaluate

$$
\lim _{n \rightarrow \infty} n^{2} \int_{0}^{\infty} f(x) e^{-n x} d x
$$

Justify all steps.
(3) Let $f(x)$ be an absolutely continuous function on the interval $[0,1]$, and let $f(0)=0$. Prove that

$$
\int_{0}^{1} \frac{|f(x)|^{2}}{x} d x \leq \int_{0}^{1}(1-x)\left|f^{\prime}(x)\right|^{2} d x .
$$

(4) Let (X, \mathcal{M}, μ) be a measure space. Suppose that $\mu(X)=1$. Let $f(x)$ be a real-valued measurable function on X, and let

$$
\alpha(t)=\mu\{x:-t<f(x)<t\} .
$$

Prove that

$$
\int_{X}|f(x)|^{2} d \mu=2 \int_{0}^{\infty} t(1-\alpha(t)) d t
$$

(5) Find all positive values of α for which the function

$$
f(x)=x \cos \left(x^{-\alpha}\right)
$$

is of bounded variation on the interval $[0,1]$.
(6) Let (X, \mathcal{M}, μ) be a measure space. Suppose that $\mu(X)=1$.Let $\phi_{1}(x), \ldots, \phi_{n}(x)$ be an ortho-normal system of real valued functions in $L^{2}(X, \mu)$. Let

$$
f(t)=\int_{X} \cos \left[t \sum_{j=1}^{n} \phi_{j}(x)\right] d \mu(x) .
$$

Find

$$
\lim _{t \rightarrow 0} \frac{1-f(t)}{t^{2}}
$$

Justify all steps

