Solve only one of the following two problems.

1A. Compute the following integral:
\[
\int_0^\infty \frac{\cos(x)}{1+x^4} \, dx.
\]

1B. Find a conformal mapping of the vertical semi-infinite strip \(\{0 < \text{Re}(z) < 1, \text{Im}(z) > 0\} \) onto the unit disc \(|w| < 1\).

2. Compute the singular homology groups \(H_*(X, \mathbb{Z}) \) of the space \(X = \mathbb{R}^3 \setminus A \), where \(A \) is a subset of \(\mathbb{R}^3 \) homeomorphic to the disjoint union of two unlinked circles.

3. Consider the following map \(f : \mathbb{R}^3 \to \mathbb{R}^2 \):
\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
\mapsto
\begin{pmatrix}
\frac{xz - y^2}{y - z^2} \\
yz - x^2
\end{pmatrix}.
\]
For which values \((a, b) \in \mathbb{R}^2\) of \(f \) is the level set \(f^{-1}(a, b) \) a smooth submanifold of \(\mathbb{R}^3 \) ?

4. Consider the surface \(\Sigma \) obtained by identifying the edges of a square in the following way:

(a) Construct a model of the universal covering space of this surface, indicating especially how \(\pi_1(\Sigma, v) \) acts.
(b) Identify the covering space \(X \) of \(\Sigma \), which corresponds to the subgroup of \(\pi_1(\Sigma, v) \) generated by \(a \) and describe the group of covering automorphisms of \(X \).

5. Consider the submanifold \(\iota : M \hookrightarrow \mathbb{R}^3 \) given by \(x^2 + y^2 - z^2 = 1 \).
(a) Show that the vector field \(X = \frac{xz}{1 + z^2} \frac{\partial}{\partial x} + \frac{yz}{1 + z^2} \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \) is tangent to \(M \), i.e. that there exists a vector field \(Y \) on \(M \) such that for any \(m \in M \) we have \(\iota_*(Y(m)) = X(m) \).
(b) Show that the two-form \(\omega = x \, dy \wedge dz + y \, dx \wedge dz + z \, dx \wedge dy \) restricts to an area form on \(M \), i.e. a two-form which never vanishes. (Hint: use cylindrical coordinates.)
(c) Does the flow of \(Y \) on \(M \) preserve \(\iota^*(\omega) \)?

6. Prove the Poincaré lemma in the plane: a closed 1-form or 2-form on \(\mathbb{R}^2 \) is exact.

7. Let \(T^2 \) be the two-dimensional torus and let \(\phi : S^2 \to T^2 \) be a smooth map. Show that for any top de Rham cohomology class \([\nu] \in H^2(T^2)\), we have \(\phi^*[\nu] = 0 \).