1. Use contour integration to evaluate
\[\int_0^{2\pi} (\cos \theta)^n \, d\theta, \quad \text{for all} \quad n \geq 0. \]

2. Let \(x = [x_0, x_1, \ldots, x_m] \) be homogeneous coordinates on \(\mathbb{RP}^m \), which determine the line \((tx_0, tx_1, \ldots, tx_m), \ t \in \mathbb{R} \) that represents a point of \(\mathbb{RP}^m \). Let \(y = [y_0, y_1, \ldots, y_n] \) be homogeneous coordinates on \(\mathbb{RP}^n \). Suppose that \(m \leq n \). Show that the set
\[\{(x, y) \mid \sum_{j=0}^m x_j y_j = 0\} \subseteq \mathbb{RP}^m \times \mathbb{RP}^n \]
is an embedded submanifold of \(\mathbb{RP}^m \times \mathbb{RP}^n \), and determine its dimension.

3. Let \(T \) be the solid torus in \(\mathbb{R}^3 \), which is obtained by revolving the disc \((x - 2)^2 + z^2 \leq 1\) in the \(xz\)-plane around the \(z\)-axis. Compute the homology groups of the space \(X = T/\sim \) obtained by identifying the pairs of points on the boundary of \(T \), which are symmetric about the origin, i.e. \((x, y, z) \sim (-x, -y, -z)\) for \((x, y, z) \in \partial(T)\).

4. Let \(i : S^3 \hookrightarrow \mathbb{R}^4 \) be the inclusion map of the unit sphere and consider the following 3-form on \(\mathbb{R}^4 \):
\[\alpha = x_1 \, dx_2 \wedge dx_3 \wedge dx_4 - x_2 \, dx_1 \wedge dx_3 \wedge dx_4 + x_3 \, dx_1 \wedge dx_2 \wedge dx_4 - x_4 \, dx_1 \wedge dx_2 \wedge dx_3. \]
Also let \(\beta = i^*(\alpha) \).

(1) Are either \(\alpha \) or \(\beta \) exact and/or closed?
(2) Evaluate \(\int_{S^3} \beta \).
(3) Let \(\gamma \) be the following 3-form on \(\mathbb{R}^4 \setminus \{0\} \):
\[\gamma = \frac{\alpha}{(x_1^2 + x_2^2 + x_3^2 + x_4^2)^k}, \quad k \in \mathbb{R}. \]
Determine the values of \(k \) for which \(\gamma \) is closed and those for which it is exact.
5. Prove that there is no such continuous map \(f : \mathbb{S}^2 \to \mathbb{S}^1 \), that satisfies \(f \circ \alpha = \beta \circ f \), where \(\alpha \) and \(\beta \) are the antipodal maps on \(\mathbb{S}^2 \) and \(\mathbb{S}^1 \) respectively.

6. Let \(\mathbb{S}^2 \) be the unit sphere in \(\mathbb{R}^3 \), given by \(x^2 + y^2 + z^2 = 1 \). Let \(U \) be the coordinate chart \(U := \{ (x, y, z) \mid 0 \leq x^2 + y^2 < 1, \ y > 0 \} \) with local coordinates \((x, z) \). A certain vector field \(\mathbf{X} \) on \(\mathbb{S}^2 \) has the form

\[
\mathbf{X}|_U = \sqrt{1 - x^2 - z^2} \frac{\partial}{\partial x}
\]

in the coordinate chart \(U \).

a) Sketch the vector field \(\mathbf{X}|_U \) in the local coordinates, i.e. in the domain \(0 \leq x^2 + z^2 < 1 \), find the integral curves \((x(t), z(t)) \) explicitly, and sketch them.

b) Define a coordinate chart \(V \) that contains the point \((x, y, z) = (0, 0, 1) \), and define suitable local coordinates \((\xi, \eta) \). Express \(\mathbf{X} \) in \(U \cap V \) in terms of the your local coordinates \((\xi, \eta) \).

c) Sketch the vector field \(\mathbf{X}|_{U \cap V} \) in your local coordinates \((\xi, \eta) \), find the integral curves \((\xi(t), \eta(t)) \) explicitly, and sketch them.

d) Give a geometric interpretation of \(\mathbf{X} \) on \(\mathbb{S}^2 \subset \mathbb{R}^3 \).

7. Let \(a \) and \(b \) be the generators of \(\pi_1(\mathbb{S}^1 \vee \mathbb{S}^1) \) corresponding to the two \(\mathbb{S}^1 \) summands. Describe the covering space of \(\mathbb{S}^1 \vee \mathbb{S}^1 \) corresponding to the subgroup generated by \(a^2, b, \) and \(aba^{-1} \), and determine the group of its deck transformations.