Geometry/Topology Qualifying Exam

August 2011

1. Compute the following integral:

\[\int_{-\infty}^{\infty} \frac{\cos \omega x}{b^2 + x^2} \, dx, \]

where \(b > 0 \) and \(\omega > 0 \), using an appropriate contour integral.

2. a) Show that every continuous map \(S^2 \to S^1 \times S^1 \) is nullhomotopic (i.e., homotopic to a constant map).

b) Show that the map \(S^1 \times S^1 \to S^2 \) gotten by collapsing two generating curves to a point is not nullhomotopic. (You can picture this map by considering the torus \(S^1 \times S^1 \) as the square with the appropriate identifications on the boundary and then \(S^2 \) as the square with the entire boundary identified to one point.)

3. For the following forms, show each is closed, exact, both, or neither:

a) \(\omega_1 = xdy - ydx \) on \(\mathbb{R}^2 \)

b) \(\omega_2 = \frac{x\,dy - y\,dx}{x^2 + y^2} \) on \(\mathbb{R}^2 \setminus \{(0,0)\} \).

c) \(\iota^* \omega_1 \), where \(\iota \) is the inclusion of the circle of radius 1 centered at \((0,0) \) into \(\mathbb{R}^2 \).

d) \(\iota^* \omega_2 \), where \(\iota \) is the inclusion of the circle of radius 1 centered at \((0,0) \) into \(\mathbb{R}^2 \).

Note: in c and d, we mean the restriction of the forms to the unit circle, and are considering the forms on the circle.
Do three of the following four problems:

4. Give a presentation of the fundamental group of the connected sum $K^2 \# \mathbb{RP}^2$ constructed as shown (with gluings along a, b, c, d):

![Diagram of $K^2 \# \mathbb{RP}^2$]

where the basepoint is on the curve c.

5. Let $a : S^n \to S^n$ be the antipodal map $a(x) = -x$ on the n-sphere S^n.
 a) Show that a is orientation preserving if and only if n is odd.
 b) Show that \mathbb{RP}^n is orientable if and only if n is odd.

6. Consider the space $\mathbb{R}^3 \setminus C$, where C is the union of the x and y axes.
 a) Explain why the homology groups with integer coefficients of $\mathbb{R}^3 \setminus C$ are isomorphic to the homology groups with integer coefficients of S^2 minus four points.
 b) Compute the homology with integer coefficients of $\mathbb{R}^3 \setminus C$.

7. Let M be a smooth, closed (compact), orientable n-dimensional manifold, let $p \in M$ and let $B \subseteq M$ be an open coordinate ball containing p (so B is diffeomorphic to a ball in \mathbb{R}^n). Let $A = M \setminus \{p\}$. Using Mayer-Vietoris for de Rham cohomology with the cover $M = A \cup B$, show:
 a) The connecting homomorphism $H^{n-1}_{dR}(A \cap B) \to H^n_{dR}(M)$ is an isomorphism.
 b) The map $H^{n-1}_{dR}(M) \to H^{n-1}_{dR}(A)$ induced by the inclusion map is an isomorphism.