Geometry/Topology Qualifying Exam
January 2009

1. Calculate
\[\int_0^\infty \frac{2x^2 - 1}{x^4 + 5x^2 + 4} \, dx. \]

2. Consider the function
\[f : S^2 \to \mathbb{R} : \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to xy. \]
Find the critical points and critical values for this function.

3. Consider the following vector fields defined in \(\mathbb{R}^2 \):
\[X = 2 \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}, \quad \text{and} \quad Y = \frac{\partial}{\partial y}. \]
Determine whether or not there exists a (locally defined) coordinate system \((s,t)\) in a neighborhood of \((x,y) = (0,1)\) such that
\[X = \frac{\partial}{\partial s}, \quad \text{and} \quad Y = \frac{\partial}{\partial t}. \]

4. Let \(X \) be a connected manifold and let \(S^1 \) be the unit circle. Recall that \(X \vee S^1 \) is the space obtained by identifying one point in \(X \) with one point in \(S^1 \). Determine whether the \(S^1 \) is homotopically trivial in the space \(X \vee S^1 \).

5. The 3-ball \(B^3(r) \subseteq \mathbb{R}^3 \) is a 3-manifold with boundary \(S^2(r) \), the 2-sphere of radius \(r \). Equip \(B^3(r) \) with the standard orientation and \(S^2(r) \) with the induced orientation. Assume that \(\omega \) is a 2-form defined on \(\mathbb{R}^3 \setminus \{0\} \) such that
\[\int_{S^2(r)} \omega = a \frac{b}{r}, \]
for all \(r > 0 \).

(a) Given \(0 < c < d \), let \(M = \{ x \in \mathbb{R}^3 : c \leq |x| \leq d \} \), with standard orientation. Evaluate \(\int_M \omega \).

(b) If \(\omega \) is closed, what can you say about \(a \) and \(b \)?

(c) If \(\omega \) is exact in \(\mathbb{R}^3 \setminus \{0\} \), what can you say about \(a \) and \(b \)?

6. Let \(\Gamma \) denote the group generated by the transformations of \(\mathbb{R}^2 \) given by
\[A : (x,y) \to (x+1,-y) \]
and
\[B : (x,y) \to (x,y+1). \]

(a) Identify the surface \(M \) obtained from \(\mathbb{R}^2 \) by identifying \((x,y) \) and \(\gamma(x,y) \), for each \(\gamma \in \Gamma \).

(b) Find explicit generators for the DeRham cohomology of the surface \(M \) (using the variables \(x \) and \(y \)).
7. Determine whether each of the following statements is true or false, and briefly explain.

(a) The tangent bundle of S^2 is a trivial vector bundle.
(b) The tangent bundle of S^3 is a trivial vector bundle.
(c) The universal covering space of $\mathbb{R}^2 \setminus \{\pm 1\}$ is contractible.
(d) If the degree of a smooth map $f : S^2 \to S^2$ is nonzero, then the map f is onto.
(e) All covering spaces of the torus $S^1 \times S^1$ are normal.