GEOMETRY/TOPOLOGY QUALIFYING EXAM, JANUARY 2022

1. Suppose that p is a positive real number. Evaluate the integral

$$
\int_{-\infty}^{+\infty} \frac{x}{1+x^{4}} e^{-i p x} d x
$$

2. (a) For which values of c is

$$
X_{c}=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2}+x y=c\right\}
$$

a smooth manifold?
(b) For the values $c=-1, c=0$ and $c=1$ answer the following questions. What is the homotopy type of X_{c} (e.g. is it homotopic to a point, a sphere,...)? What are the fundamental group and homology groups? Briefly explain your answers - pictures are encouraged.
3. Let $\iota: S^{3} \rightarrow \mathbb{R}^{4}$ be the inclusion map, and consider the 3 -form on \mathbb{R}^{4} given by

$$
\begin{aligned}
\alpha=i_{E} d V= & x_{1} d x_{2} \wedge d x_{3} \wedge d x_{4}-x_{2} d x_{1} \wedge d x_{3} \wedge d x_{4} \\
& +x_{3} d x_{1} \wedge d x_{2} \wedge d x_{4}-x_{4} d x_{1} \wedge d x_{2} \wedge d x_{3}
\end{aligned}
$$

where E denotes the 'Euler vector field', i.e. $\left.E\right|_{x}=x$.
(a) Evaluate $\int_{S^{3}} \iota^{*} \alpha$. you may need the volume for S^{3}; it is $\frac{8}{3} \pi^{2}$
(b) Let γ be the following 3 -form on $\mathbb{R}^{4} \backslash\{0\}$:

$$
\gamma=\frac{\alpha}{\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)^{k}}
$$

for $k \in \mathbb{R}$. Determine the values of k for which γ is closed and those for which it is exact.
4. (a) Explain why the map

$$
f: \mathbb{C} \backslash\{0, \pm 1, \pm i\} \rightarrow \mathbb{C} \backslash\{0,1\}: z \rightarrow w=z^{4}
$$

is a normal (or regular) covering.
(b) Find a set of generators for the subgroup of $\pi_{1}(\mathbb{C} \backslash\{0,1\}, 1 / 2)$ which corresponds to this covering.
5. A framed knot is an embedding of $D^{2} \times S^{1}$ into S^{3}, where the image of the embedding is denoted K and D^{2} denotes the open two dimensional disk. Show that the 1st homology group of the knot complement, $H_{1}\left(S^{3} \backslash K\right) \cong \mathbb{Z}$.
6. For each of the following statements, either briefly explain why the statement is true, or give a counterexample.
(a) Every exact k-form on a compact orientable k-dimensional manifold vanishes at some point.
(b) If X is vector field on a manifold M and $X(q) \neq 0$, then there exists a coordinate system $x_{1}, . ., x_{n}$ near q such that $X=\frac{\partial}{\partial x_{1}}$.
(c) There exists a compact two-manifold X with $H_{1}(X, \mathbb{Z}) \neq 0$ and $H_{D R}^{1}(X, \mathbb{R})=0$, where $H_{D R}^{*}$ denotes DeRham cohomology;

