Analysis problem set - Integration workshop 2016

August 2, 2016

1 Sequences and series

1.1 Let x_{n} be a bounded sequence of real numbers. Let $x=\lim \sup _{n \rightarrow \infty} x_{n}$.
(a) Prove that there is a subsequence $x_{n_{k}}$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$.
(b) Prove that for every subsequence $x_{m_{k}}$ of x_{n} which converges, $\lim _{k \rightarrow \infty} x_{m_{k}} \leq x$
1.2 Assume that $a_{n}>0$ and $b_{n}>0$ for $\mathrm{n}=1,2, \ldots$., and suppose that $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$. Prove that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{n=1}^{\infty} b_{n}$ converges.
1.3 Show that the product $\prod_{n}\left(1+a_{n}\right)$ converges (resp. converges absolutely) if and only if the series $\sum a_{n}$ converges (resp. converges absolutely).
1.4 A non-negative sequence a_{n} is subadditive if $a_{n+m} \leq a_{n}+a_{m}$ for all $m, n \in \mathbb{Z}^{+}$. The goal of this problem is to show that, for any subadditive sequence, the limit $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$ exists.
(a) Show that, for any $n \in \mathbb{Z}^{+}$, there is a constant C_{n} such that, for all $k \geq n+1$, we have

$$
\frac{a_{k}}{k} \leq \frac{a_{n}}{n}+\frac{C}{k} .
$$

(b) Show that $\limsup _{k \rightarrow \infty} \frac{a_{k}}{k} \leq \liminf _{n \rightarrow \infty} \frac{a_{n}}{n}$. Why is this enough to prove the claim?
1.5 A_{n} is a sequence of subsets of \mathbb{R}.
(a) Explain why the following definitions make sense:

$$
\limsup _{n} A_{n}=\bigcap_{j=1}^{\infty} \bigcup_{n=j}^{\infty} A_{n}=\left\{x \mid x \in A_{n} \text { infinitely often }\right\}
$$

and

$$
\liminf _{n} A_{n}=\bigcup_{j=1}^{\infty} \bigcap_{n=j}^{\infty} A_{n}=\left\{x \mid x \in A_{n} \text { eventually }\right\}
$$

(b) What can you conclude about a sequence of subsets for which $\limsup _{n} A_{n}=\lim \inf _{n} A_{n}$. Explain why this is a very restrictive definition of a limit for sets. In your classes you will explore alternative (and less restrictive) notions for limits of sets.
1.6 (a) Let f be a continuous function on $[0,1]$. Show that the following limits exist and evaluate them:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x \\
& \lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x
\end{aligned}
$$

(b) Let g be a differentiable function on $[0,1]$ such that $g(1)=0$. Show that the following limit exists and evaluate:

$$
\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1} x^{n} g(x) d x
$$

1.7 Consider the alternating series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

(a) Show that, as presented the series (i.e the sequence of partial sums taken with the given ordering) converges to $\ln (2)$.
(b) Show that, given any pair of real numbers $a<b$, the terms in the series can be rearranged so that the sequence x_{n} of partial sums (of the rearranged series) satisfies

$$
\limsup _{n} x_{n} \geq b, \quad \liminf _{n} x_{n} \leq a
$$

1.8 Let

$$
f(x)= \begin{cases}a & x=0 \\ x^{-x} & x>0\end{cases}
$$

(a) Show that there is an appropriate choice for a so that f is continuous on $[0,1]$.
(b) For this choice of a, show, with justification, that

$$
\int_{0}^{1} f(x) d x=\sum_{n=1}^{\infty} n^{-n}
$$

Possibly useful integral: If $\beta>0$ and $n \in \mathbb{N}$,

$$
\int_{0}^{\infty} x^{n} e^{-\beta x} d x=\frac{n!}{\beta^{(n+1)}}
$$

1.9 Give a counter example to the following statement: A sequence of differentiable functions f_{n} converges uniformly to a differentiable function f. This implies that the sequence of derivatives f_{n}^{\prime} converges pointwise to f^{\prime}.
$1.10 f_{n}$ is a sequence of uniformly bounded non-negative Riemann integrable functions. For each $x \in[0,1]$, the real sequence $f_{k}(x)$ is monotone non-decreasing, i.e $n \geq m$ and $x \in[0,1]$ implies that $f_{n}(x) \geq f_{m}(x)$, and $0 \leq f_{n}(x) \leq K<\infty$ for all n, x.
(a) Show that the sequence $f_{n}(x)$ converges pointwise to a bounded function $f(x)$.
(b) Show that the sequence of real numbers $s_{k}=\int_{0}^{1} f_{k}(x) d x$ also converges to some number s.
(c) Is it true that f is Riemann integrable, and $\int_{0}^{1} f(x) d x=s$? Prove or give a counter example.

2 Metric spaces and continuous functions

2.1 For $x, y \in \mathbb{R}$ let

$$
d(x, y)=\frac{|x-y|}{1+|x-y|}
$$

(a) Show this is a metric.
(b) Does this metric give \mathbb{R} a different topology from the one that comes from the usual metric on \mathbb{R} ? You should prove your answer.

2.2 The structure of open sets in \mathbb{R}.

In what follows, we are considering the standard (metric) topology on \mathbb{R}.
(a) Let S be a nonempty open subset of \mathbb{R}. For each $x \in S$, let $A_{x}=\{a \in \mathbb{R}:(a, x] \subseteq S\}$ and $B_{x}=\{b \in \mathbb{R}:[x, b) \subseteq S\}$. Show that, A_{x} and B_{x} are both non-empty.
(b) Where $x \in S$ as above, if A_{x} is bounded below, let $a_{x}=\inf \left(A_{x}\right)$. Otherwise, let $a_{x}=-\infty$, and define b_{x} is a corresponding manner. Show that $x \in I_{x}=\left(a_{x}, b_{x}\right) \subseteq S$.
(c) Show that $S=\cup_{x} I_{x}$.
(d) Show that the intervals I_{x} give a partition of S, i.e., for $x, y \in S$, either $I_{x}=I_{y}$ or $I_{x} \cap I_{y}=\emptyset$.
(e) Show that the set of distinct intervals $\left\{I_{x}: x \in S\right\}$ is countable.
(f) Prove that every open set in \mathbb{R} is a countable disjoint union of open intervals.
2.3 If $f:(X, \mathcal{T}) \rightarrow(Y, \mathcal{S})$ and $g:(Y, \mathcal{S}) \rightarrow(Z, \mathcal{V})$ are continuous, show that the composition $g \circ f:(X, \mathcal{T}) \rightarrow(Z, \mathcal{V})$ is also continuous.
2.4 A subset A of X is called dense if the closure of A is X. A topological space X is called separable if there exists a countable dense subset.
(a) Prove that \mathbb{R}^{n} with the usual topology is separable.
(b) Since the rationals are a dense set in \mathbb{R} does it follow that every open subset of \mathbb{R} is determined by the rational elements of the set?
(c) Show that the collection of all intervals of the form $\left(r_{1}, r_{2}\right)$ where both r_{1} and r_{2} are rational is countable, and further, every open subset of \mathbb{R} is uniquely determined by the intervals with rational endpoints that are contained in it.
(d) Is the collection of all open subsets of \mathbb{R} countable?
(e) If a metric space is separable, show that there is a countable collection of open balls (i.e sets of the form $B_{\epsilon}(x)=\{y: d(x, y)<\epsilon\}$) such that every open set can be written as a union of balls from this collection.
2.5 Accumulation points $A \subseteq \mathbb{R}$, and A^{\prime} denotes the set of all the accumulation points of A.
(a) If $y \in A^{\prime}$ and $U \subseteq \mathbb{R}$ is an open set containing y, show that there are infinitely many distinct points in $A \cap U$.
(b) Show that

$$
A^{\prime}=\bigcap_{x \in A} \operatorname{cl}(A \backslash\{x\}) .
$$

(c) Using this, or otherwise, show that A^{\prime} is a closed set.
(d) Show that $\operatorname{cl}(A)=A \cup A^{\prime}$.
2.6 (a) Show that \mathbb{R} and $(0,1)$ are homeomorphic, i.e., there is continuous bijection between them whose inverse is also continuous.
(b) Let $f:(0,1) \rightarrow \mathbb{R}$ be your homeomorphism. Show there is a Cauchy sequence x_{n} in $(0,1)$ such that $f\left(x_{n}\right)$ is not Cauchy in \mathbb{R}.
2.7 In the lectures we stated a proposition that said that if (X, d) and $\left(Y, d^{\prime}\right)$ are metric spaces and $f: X \rightarrow Y$, then the $\epsilon-\delta$ definition of continuity of f and the open set defintion are equivalent. Prove this proposition.
2.8 Let $C((0,1))$ be the set of bounded continuous functions on $(0,1)$ with the usual sup norm. So

$$
d(f, g)=\sup _{0<x<1}|f(x)-g(x)|
$$

Let $U=\{f: f(x)>0 \quad \forall x \in(0,1)\}$, and $V=\{f: f(x) \geq 0 \quad \forall x \in(0,1)\}$. For each of U and V determine if the set is open or closed or neither. You should prove your answer.
2.9 (a) Define a function f on $[0,1]$ by

$$
f(x)= \begin{cases}0 & x \text { is irrational } \\ 1 & x \text { is rational }\end{cases}
$$

Identify the points where f is continuous and the points where f is discontinuous.
(b) Define a function g on $[0,1]$ by

$$
g(x)= \begin{cases}0 & x \text { is irrational } \\ \frac{1}{q} & x=\frac{p}{q} \text { expressed in its lowest terms }\end{cases}
$$

Identify the points where f is continuous and the points where f is discontinuous.
(c) (Optional.. hard] Is there an example of a function $f:[0 ; 1] \rightarrow \mathbb{R}$ that is discontinuous at all the irrationals and continuous at all the rationals?
2.10 A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous if for all $\epsilon>0$, there is a $\delta>0$ such that for all $x \in \mathbb{R},|y-x|<\delta \Longrightarrow|f(y)-f(x)|<\epsilon$. This means we can pick a δ "that works" for all points in \mathbb{R}. Clearly, this definition also extends to general metric spaces.
(a) Let f be a continuous real valued function on $[0, \infty)$ such that $\lim _{x \rightarrow \infty} f(x)$ exists (and is finite). Prove that f is uniformly continuous on $[0, \infty)$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly continuous. If x_{n} is a Cauchy sequence, show that $f\left(x_{n}\right)$ is also a Cauchy sequence. Is the converse true?
2.11 Let (M, d) be a metric space. Define a set $\tilde{M} \subset M^{\mathbb{N}}$ as the collection of all the Cauchy sequences in (M, d).
(a) Show that $\rho\left(\left\{x_{n}\right\},\left\{y_{n}\right\}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)$ is a well defined function on $\tilde{M} \times \tilde{M}$, i.e the limit always exists.
(b) Show that ρ satisfies the triangle inequality.
(c) Let $a_{k}=\left\{x_{n}\right\}_{k}$ be a sequence in \tilde{M} (i.e a sequence of Cauchy sequences in (M, d)). Further, assume that a_{k} is a Cauchy sequence with respect to ρ, i.e. for all $\epsilon>0$, there is an index K such that for all $j, k>K$, we have

$$
\rho\left(a_{j}, a_{k}\right)=\lim _{n \rightarrow \infty} d\left(\left(x_{n}\right)_{j},\left(x_{n}\right)_{k}\right)<\epsilon .
$$

Construct an element a^{*} in \tilde{M} such that $\rho\left(a_{k}, a^{*}\right) \rightarrow 0$ as $k \rightarrow \infty$.

3 Compactness

3.1 Let $C([0,1])$ be the set of bounded continuous functions on $[0,1]$ with the usual sup norm. So

$$
d(f, g)=\sup _{0 \leq x \leq 1}|f(x)-g(x)|
$$

Given a function $g \in C([0,1])$, let $U_{g}=\{f: f(x)>g(x) \quad \forall x \in[0,1]\}$. Prove that U is open.
3.2 Prove or disprove the following:
(a) A is finite and U is a open subset of \mathbb{R}. If $A \subseteq U$, there exists an $\epsilon>0$ such that for all $x \in A, N(x, \epsilon) \subseteq U$.
(b) P is countable and U is a open subset of \mathbb{R}. If $P \subseteq U$, there exists an $\epsilon>0$ such that for all $x \in P, N(x, \epsilon) \subseteq U$.
(c) F is closed and U is a open subset of \mathbb{R}. If $F \subseteq U$, there exists an $\epsilon>0$ such that for all $x \in F, N(x, \epsilon) \subseteq U$.
(d) K is compact and U is a open subset of \mathbb{R}. If $K \subseteq U$, there exists an $\epsilon>0$ such that for all $x \in K, N(x, \epsilon) \subseteq U$.
3.3 This is a continuation of problem 2.1. For $x, y \in \mathbb{R}$, let

$$
d(x, y)=\frac{|x-y|}{1+|x-y|}
$$

We already showed that d is a metric on \mathbb{R}.
(a) Prove that with this metric, the entire space of \mathbb{R} is not compact even though it is closed and bounded.
(b) Can you characterize all the compact sets in (\mathbb{R}, d) ?
3.4 A metric space X is said to be totally bounded if for any $\epsilon>0$ it can be covered by finitely many ϵ-balls. Also, a metric space is complete, if every Cauchy sequence in X converges. Prove that X is compact if and only if X is complete and totally bounded.
3.5 Define the "distance" between two subsets of \mathbb{R} by $\rho(A, B)=\inf _{x \in A, y \in B}|x-y|$.
(a) Is ρ a metric on the power set $2^{\mathbb{R}}$ (i.e the collection of all subsets of \mathbb{R})?
(b) If A is closed and B is compact, show that $\rho(A, B)=0$ if and only if $A \cap B$ is nonempty.
(c) If A and B are closed, does it follow that $\rho(A, B)=0 \Longrightarrow A \cap B \neq \emptyset$?

4 Calculus

4.1 Prove the inequality $e^{x} \geq 1+x$ for all $x \in \mathbb{R}$.
$4.2 f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ are differentiable. Prove the chain rule for the composition $g \circ f$.
4.3 A C^{2} function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if $f^{\prime \prime}(x)>0$ for all x. Show that, for any finite collection of points $a_{1}, a_{2}, \ldots, a_{n}$, we have the inequality

$$
\frac{f\left(a_{1}\right)+f\left(a_{2}\right)+\cdots+f\left(a_{n}\right)}{n} \geq f\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right) .
$$

(Hint: Draw a picture. Start with $n=2$)
4.4 (a) Give an example of a function of two variables that is discontinuous at the origin, but whose partial derivatives at the origin exist.
(b) Give an example of a function of two variables all of whose directional derivatives exist at the origin, but the function itself is not differentiable at the origin.
4.5 An open subset $O \subset \mathbb{R}^{n}$ has the property that for any pair of points $x, y \in O$, there is a differentiable function $\gamma:[0,1] \rightarrow O$ such that $\gamma(0)=x$ and $\operatorname{gamma}(1)=y . f: O \rightarrow \mathbb{R}^{m}$ is differentiable and $D f=0$ on O. Show that f is a constant on O.
(The Hypothesis can be slightly weakened. It is sufficient to assume that O is connected and open.)
4.6 Evaluate the derivatives of the following matrix functions:
(a) inv: $G L(n) \rightarrow G L(n)$ given by $\operatorname{inv}(M)=M^{-1}$.
(b) The determinant function which maps $G L(n)$ to \mathbb{R}.
4.7 Show that every point p on the sphere $x^{2}+y^{2}+z^{2}=1$ has a (3 dimensional) neighborhood U such that there is a smooth, one to one mapping of an open neighborhood V of the origin in \mathbb{R}^{3} such that the plane $z=0$ maps to the surface of the sphere.
4.8 Let f and $\frac{\partial f}{\partial y}$ be continuous on $[0,1] \times[0,1]$ and assume that $p, q:[0,1] \rightarrow[0,1]$ are differentiable. Define

$$
F(y)=\int_{p(y)}^{q(y)} f(x, y) d x, \quad y \in[0,1]
$$

Use the chain rule to find $F^{\prime}(y)$. Hint: Consider $G\left(x_{1}, x_{2}, x_{3}\right)=\int_{x_{1}}^{x_{2}} f\left(t, x_{3}\right) d t$.
4.9 Let $f(x, y)=\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)^{2}$. Show that

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right) d y=-\pi / 4, \text { but } \quad \int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right) d x=\pi / 4
$$

4.10 Show that in a neighborhood of the origin, the systems of equations

$$
\begin{aligned}
3 x+y-z+u^{2} & =0 \\
x-y+2 z+u & =0 \\
2 x+2 y-3 z+2 u & =0
\end{aligned}
$$

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x. What can you say (using the implicit function theorem) about solving them for x, y, z in terms of u ?
4.11 Let F denote the vector field $\left(x^{2}-z^{2}, 2 x y, z\right)$ on \mathbb{R}^{3}. Compute in two different ways the surface integral

$$
\iint_{T} F \cdot n d A
$$

where T denotes the surface of the tetrahedron bounded by $x \geq 0, y \geq 0, z \geq 0, x+y+z \leq 1$ and n denotes the outward normal to T. Use the two answers to verify the divergence theorem.
4.12 Compute in two different ways the line integral

$$
\oint y d x-x d y+z^{2} d z
$$

where C is the intersection of the paraboloid $z=x^{2}+4 y^{2}$ with the cylinder $x^{2}+y^{2}=9$, traversed counter-clockwise when viewed from the point ($0,0,100$). Use the two answers to verify Stokes' theorem
4.13 A smooth function F on the (open) unit disc in \mathbb{R}^{2} satisfies $F(0,0)=(0,0)$ and $\|F(x)\| \geq$ $3\|x\|$.
(a) Show that F is one to one in a neighborhood of the origin.
(b) Let $F=(u, v)$ in components. Show that, for all $a<1$, the integral

$$
\frac{1}{2 \pi} \oint_{\|r\|=a} \frac{u \nabla v-v \nabla u}{u^{2}+v^{2}} \cdot d r
$$

is an integer and this value does not depend on a.
(c) Can you determine the value of the integral in terms of the Jacobian $A=D F(0,0)$ of the mapping F at the origin?
(d) Can you construct a smooth function F on the (open) unit disc in \mathbb{R}^{2} satisfying $F(0,0)=(0,0), F(x) \neq(0,0)$ for $x \neq(0,0)$, such that the value of the integral is 2 ?
$4.14 M: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the mapping

$$
M(x, y)=\left(2 x-\sin (x y), \frac{1}{3} y+x^{2}-y^{2}\right) .
$$

(a) Show that M is invertible in a neighborhood of the origin.
(b) The unstable manifold of the origin is the set $\Gamma_{u}=\left\{(x, y) \mid M^{-n}(x, y) \rightarrow(0,0)\right.$ as $n \rightarrow$ $\infty\}$. Show that Γ_{u} is invariant under M.
(c) Show that, there is a unique function f such that $f(x) \rightarrow 0$ when $x \rightarrow 0$, and the unstable manifold is given by the graph of the function f for sufficiently small x, i.e.

$$
\Gamma_{u} \cap B_{\epsilon}(0,0)=\{(x, f(x))| | x \mid<\epsilon\} \cap B_{\epsilon}(0,0)
$$

5 Complex analysis

5.1 Let $f(z)$ be analytic at c. Write $f^{\prime}(c)=r e^{i \theta}$. Write $z=x+i y$ and $f(z)=u(x, y)+i v(x, y)$. We can think of f as a map $\left(u(x, y), v(x, y)\right.$ from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. The total derivative of this map at c is a two by two matrix. Find it in terms of r and θ. Express the direction derivatives of the map on \mathbb{R}^{2} in terms of r and θ.
5.2 Define

$$
f(z)=\sum_{k=1}^{\infty} a_{k}\left(z-z_{0}\right)^{k}
$$

(a) If the radius of convergence of the above power series is r, then show that the radii of convergence for the series obtained by differentiating and integrating the above series termwise is also r.
(b) Show that the termwise differentiated series converges uniformly on every disk of the form $\left|z-z_{0}\right| \leq \rho<r$. Use this to show that $f(z)$ is given by termwise differentiating the above series, for any compact subset of the disk $\left|z-z_{0}\right|<r$.
5.3 Suppose that γ is a piecewise smooth positively, counterclockwise oriented, simple closed curve. Use Green's Theorem to show that the value of the integral

$$
\oint_{\gamma} \frac{d z}{z-p}
$$

equals 0 if p is outside γ and $2 \pi i$ if p is inside γ.
5.4 Let $f(z)$ be analytic at z_{0}. Prove that for sufficiently small ϵ,

$$
\frac{1}{2 \pi i} \oint_{\left|z-z_{0}\right|=\epsilon} \frac{f(z)}{\left(z-z_{0}\right)^{n}} d z=\frac{f^{(n-1)}(c)}{(n-1)!}
$$

The contour is the circle centered at z_{0} with radius ϵ traversed in the counterclockwise direction. This is a standard theorem in complex analysis books. The exercise is to prove it directly from the statement of Cauchy's theorem given in the notes. Hint: power series.
5.5 If $f(z)$ is analytic on the closed disk $B\left(z_{0}, r\right)$, show that there is a constant C such that the derivatives of f at z_{0} can be bounded by

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{C n!}{r^{n+1}}
$$

5.6 For each of the following functions f and z_{0}, determine if the function has a pole or essential singularity at z_{0}. In the case of a pole determine the order of the pole and the principal part.
(a) $f(z)=\frac{1}{z \sin (z)}, z_{0}=0$
(b) $f(z)=\frac{1}{\left(z^{2}+1\right)^{2}}, z_{0}=i$
(c) $f(z)=\exp (-1 / z), z_{0}=0$.
(d) $f(z)=\tan ^{2}(z), z_{0}=\pi / 2$.
5.7 A Möbius transformation, or a fractional linear transformation, is a mapping of the form

$$
w=f(z)=\frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \mathbb{C}$. This can be extended to the Riemann sphere $=\mathbb{C} \cup\{\infty\}$

$$
f(\infty)=a / c, \quad f(-d / c)=\infty
$$

(a) Show that the Mobius transformations form a group.
(b) Show that the Mobius transformations map circles to circles on the Riemann sphere (Note: A straight line on \mathbb{C} is considered a circle through ∞ on the Riemann sphere).

