
Analysis problem set – Integration workshop 2016

August 2, 2016

1 Sequences and series

1.1 Let xn be a bounded sequence of real numbers. Let x = lim supn→∞ xn.

(a) Prove that there is a subsequence xnk
such that limk→∞ xnk

= x.

(b) Prove that for every subsequence xmk
of xn which converges, limk→∞ xmk

≤ x

1.2 Assume that an > 0 and bn > 0 for n = 1, 2, . . ., and suppose that limn→∞ an/bn = 1.
Prove that

∑∞
n=1 an converges if and only if

∑∞
n=1 bn converges.

1.3 Show that the product
∏
n

(1 + an) converges (resp. converges absolutely) if and only if

the series
∑

an converges (resp. converges absolutely).

1.4 A non-negative sequence an is subadditive if an+m ≤ an + am for all m,n ∈ Z+. The goal

of this problem is to show that, for any subadditive sequence, the limit lim
n→∞

an
n

exists.

(a) Show that, for any n ∈ Z+, there is a constant Cn such that, for all k ≥ n+ 1, we have

ak
k
≤ an

n
+
C

k
.

(b) Show that lim sup
k→∞

ak
k
≤ lim inf

n→∞

an
n

. Why is this enough to prove the claim?

1.5 An is a sequence of subsets of R.

(a) Explain why the following definitions make sense:

lim sup
n

An =
∞⋂
j=1

∞⋃
n=j

An = {x|x ∈ An infinitely often}

and

lim inf
n

An =
∞⋃
j=1

∞⋂
n=j

An = {x|x ∈ An eventually}

(b) What can you conclude about a sequence of subsets for which lim supnAn = lim infnAn.
Explain why this is a very restrictive definition of a limit for sets. In your classes you will
explore alternative (and less restrictive) notions for limits of sets.
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1.6 (a) Let f be a continuous function on [0, 1]. Show that the following limits exist and
evaluate them:

lim
n→∞

∫ 1

0
xn f(x) dx

lim
n→∞

n

∫ 1

0
xn f(x) dx

(b) Let g be a differentiable function on [0, 1] such that g(1) = 0. Show that the following
limit exists and evaluate:

lim
n→∞

n2
∫ 1

0
xn g(x) dx

1.7 Consider the alternating series

1− 1

2
+

1

3
− 1

4
+ · · ·

(a) Show that, as presented the series (i.e the sequence of partial sums taken with the
given ordering) converges to ln(2).
(b) Show that, given any pair of real numbers a < b, the terms in the series can be
rearranged so that the sequence xn of partial sums (of the rearranged series) satisfies

lim sup
n

xn ≥ b, lim inf
n

xn ≤ a.

1.8 Let

f(x) =

{
a x = 0

x−x x > 0

(a) Show that there is an appropriate choice for a so that f is continuous on [0, 1].

(b) For this choice of a, show, with justification, that∫ 1

0
f(x)dx =

∞∑
n=1

n−n.

Possibly useful integral: If β > 0 and n ∈ N,∫ ∞
0

xne−βxdx =
n!

β(n+1)

1.9 Give a counter example to the following statement: A sequence of differentiable functions
fn converges uniformly to a differentiable function f . This implies that the sequence of
derivatives f ′n converges pointwise to f ′.
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1.10 fn is a sequence of uniformly bounded non-negative Riemann integrable functions. For
each x ∈ [0, 1], the real sequence fk(x) is monotone non-decreasing, i.e n ≥ m and x ∈ [0, 1]
implies that fn(x) ≥ fm(x), and 0 ≤ fn(x) ≤ K <∞ for all n, x.

(a) Show that the sequence fn(x) converges pointwise to a bounded function f(x).

(b) Show that the sequence of real numbers sk =
∫ 1
0 fk(x) dx also converges to some

number s.

(c) Is it true that f is Riemann integrable, and
∫ 1
0 f(x) dx = s ? Prove or give a counter

example.

2 Metric spaces and continuous functions

2.1 For x, y ∈ R let

d(x, y) =
|x− y|

1 + |x− y|

(a) Show this is a metric.

(b) Does this metric give R a different topology from the one that comes from the usual
metric on R? You should prove your answer.

2.2 The structure of open sets in R.
In what follows, we are considering the standard (metric) topology on R.

(a) Let S be a nonempty open subset of R. For each x ∈ S, let Ax = {a ∈ R : (a, x] ⊆ S}
and Bx = {b ∈ R : [x, b) ⊆ S}. Show that, Ax and Bx are both non-empty.

(b) Where x ∈ S as above, if Ax is bounded below, let ax = inf(Ax). Otherwise, let
ax = −∞, and define bx is a corresponding manner. Show that x ∈ Ix = (ax, bx) ⊆ S.

(c) Show that S = ∪xIx.

(d) Show that the intervals Ix give a partition of S, i.e., for x, y ∈ S, either Ix = Iy or
Ix ∩ Iy = ∅.

(e) Show that the set of distinct intervals {Ix : x ∈ S} is countable.

(f) Prove that every open set in R is a countable disjoint union of open intervals.

2.3 If f : (X, T ) → (Y,S) and g : (Y,S) → (Z,V) are continuous, show that the composition
g ◦ f : (X, T )→ (Z,V) is also continuous.

2.4 A subset A of X is called dense if the closure of A is X. A topological space X is called
separable if there exists a countable dense subset.

(a) Prove that Rn with the usual topology is separable.

(b) Since the rationals are a dense set in R does it follow that every open subset of R is
determined by the rational elements of the set?

(c) Show that the collection of all intervals of the form (r1, r2) where both r1 and r2 are
rational is countable, and further, every open subset of R is uniquely determined by
the intervals with rational endpoints that are contained in it.
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(d) Is the collection of all open subsets of R countable?

(e) If a metric space is separable, show that there is a countable collection of open balls
(i.e sets of the form Bε(x) = {y : d(x, y) < ε}) such that every open set can be written
as a union of balls from this collection.

2.5 Accumulation points A ⊆ R, and A′ denotes the set of all the accumulation points of
A.

(a) If y ∈ A′ and U ⊆ R is an open set containing y, show that there are infinitely many
distinct points in A ∩ U .

(b) Show that

A′ =
⋂
x∈A

cl(A\{x}).

(c) Using this, or otherwise, show that A′ is a closed set.

(d) Show that cl(A) = A ∪A′.

2.6 (a) Show that R and (0, 1) are homeomorphic, i.e., there is continuous bijection between
them whose inverse is also continuous.

(b) Let f : (0, 1)→ R be your homeomorphism. Show there is a Cauchy sequence xn in
(0, 1) such that f(xn) is not Cauchy in R.

2.7 In the lectures we stated a proposition that said that if (X, d) and (Y, d′) are metric spaces
and f : X → Y , then the ε− δ definition of continuity of f and the open set defintion are
equivalent. Prove this proposition.

2.8 Let C((0, 1)) be the set of bounded continuous functions on (0, 1) with the usual sup norm.
So

d(f, g) = sup
0<x<1

|f(x)− g(x)|

Let U = {f : f(x) > 0 ∀x ∈ (0, 1)}, and V = {f : f(x) ≥ 0 ∀x ∈ (0, 1)}. For each of U
and V determine if the set is open or closed or neither. You should prove your answer.

2.9 (a) Define a function f on [0, 1] by

f(x) =

{
0 x is irrational

1 x is rational

Identify the points where f is continuous and the points where f is discontinuous.

(b) Define a function g on [0, 1] by

g(x) =

{
0 x is irrational
1
q x = p

q expressed in its lowest terms

Identify the points where f is continuous and the points where f is discontinuous.

(c) (Optional.. hard] Is there an example of a function f : [0; 1]→ R that is discontinuous
at all the irrationals and continuous at all the rationals?
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2.10 A function f : R→ R is uniformly continuous if for all ε > 0, there is a δ > 0 such that for
all x ∈ R, |y − x| < δ =⇒ |f(y) − f(x)| < ε. This means we can pick a δ “that works”
for all points in R. Clearly, this definition also extends to general metric spaces.

(a) Let f be a continuous real valued function on [0,∞) such that limx→∞ f(x) exists (and
is finite). Prove that f is uniformly continuous on [0,∞).

(b) Let f : R→ R be uniformly continuous. If xn is a Cauchy sequence, show that f(xn)
is also a Cauchy sequence. Is the converse true?

2.11 Let (M,d) be a metric space. Define a set M̃ ⊂ MN as the collection of all the Cauchy
sequences in (M,d).

(a) Show that ρ({xn}, {yn}) = lim
n→∞

d(xn, yn) is a well defined function on M̃ × M̃ , i.e the

limit always exists.

(b) Show that ρ satisfies the triangle inequality.

(c) Let ak = {xn}k be a sequence in M̃ (i.e a sequence of Cauchy sequences in (M,d)).
Further, assume that ak is a Cauchy sequence with respect to ρ, i.e. for all ε > 0, there is
an index K such that for all j, k > K, we have

ρ(aj , ak) = lim
n→∞

d((xn)j , (xn)k) < ε.

Construct an element a∗ in M̃ such that ρ(ak, a
∗)→ 0 as k →∞.

3 Compactness

3.1 Let C([0, 1]) be the set of bounded continuous functions on [0, 1] with the usual sup norm.
So

d(f, g) = sup
0≤x≤1

|f(x)− g(x)|

Given a function g ∈ C([0, 1]), let Ug = {f : f(x) > g(x) ∀x ∈ [0, 1]}. Prove that U is
open.

3.2 Prove or disprove the following:

(a) A is finite and U is a open subset of R. If A ⊆ U , there exists an ε > 0 such that for
all x ∈ A, N(x, ε) ⊆ U .

(b) P is countable and U is a open subset of R. If P ⊆ U , there exists an ε > 0 such that
for all x ∈ P , N(x, ε) ⊆ U .

(c) F is closed and U is a open subset of R. If F ⊆ U , there exists an ε > 0 such that
for all x ∈ F , N(x, ε) ⊆ U .

(d) K is compact and U is a open subset of R. If K ⊆ U , there exists an ε > 0 such that
for all x ∈ K, N(x, ε) ⊆ U .

3.3 This is a continuation of problem 2.1. For x, y ∈ R, let

d(x, y) =
|x− y|

1 + |x− y|

We already showed that d is a metric on R.
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(a) Prove that with this metric, the entire space of R is not compact even though it is
closed and bounded.

(b) Can you characterize all the compact sets in (R, d) ?

3.4 A metric space X is said to be totally bounded if for any ε > 0 it can be covered by finitely
many ε-balls. Also, a metric space is complete, if every Cauchy sequence in X converges.
Prove that X is compact if and only if X is complete and totally bounded.

3.5 Define the “distance” between two subsets of R by ρ(A,B) = inf
x∈A,y∈B

|x− y|.

(a) Is ρ a metric on the power set 2R (i.e the collection of all subsets of R)?

(b) If A is closed and B is compact, show that ρ(A,B) = 0 if and only if A∩B is nonempty.

(c) If A and B are closed, does it follow that ρ(A,B) = 0 =⇒ A ∩B 6= ∅?

4 Calculus

4.1 Prove the inequality ex ≥ 1 + x for all x ∈ R.

4.2 f : Rk → Rm and g : Rm → Rn are differentiable. Prove the chain rule for the composition
g ◦ f .

4.3 A C2 function f : R → R is convex if f ′′(x) > 0 for all x. Show that, for any finite
collection of points a1, a2, . . . , an, we have the inequality

f(a1) + f(a2) + · · ·+ f(an)

n
≥ f

(
a1 + a2 + · · ·+ an

n

)
.

(Hint: Draw a picture. Start with n = 2)

4.4 (a) Give an example of a function of two variables that is discontinuous at the origin, but
whose partial derivatives at the origin exist.

(b) Give an example of a function of two variables all of whose directional derivatives exist
at the origin, but the function itself is not differentiable at the origin.

4.5 An open subset O ⊂ Rn has the property that for any pair of points x, y ∈ O, there is a
differentiable function γ : [0, 1]→ O such that γ(0) = x and gamma(1) = y. f : O → Rm
is differentiable and Df = 0 on O. Show that f is a constant on O.

(The Hypothesis can be slightly weakened. It is sufficient to assume that O is connected
and open.)

4.6 Evaluate the derivatives of the following matrix functions:

(a) inv : GL(n)→ GL(n) given by inv(M) = M−1.

(b) The determinant function which maps GL(n) to R.

4.7 Show that every point p on the sphere x2+y2+z2 = 1 has a (3 dimensional) neighborhood
U such that there is a smooth, one to one mapping of an open neighborhood V of the
origin in R3 such that the plane z = 0 maps to the surface of the sphere.
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4.8 Let f and ∂f
∂y be continuous on [0, 1] × [0, 1] and assume that p, q : [0, 1] → [0, 1] are

differentiable. Define

F (y) =

∫ q(y)

p(y)
f(x, y)dx, y ∈ [0, 1]

Use the chain rule to find F ′(y). Hint: Consider G(x1, x2, x3) =
∫ x2
x1

f(t, x3)dt.

4.9 Let f(x, y) = (x2 − y2)/(x2 + y2)2. Show that∫ 1

0

(∫ 1

0
f(x, y)dx

)
dy = −π/4, but

∫ 1

0

(∫ 1

0
f(x, y)dy

)
dx = π/4

4.10 Show that in a neighborhood of the origin, the systems of equations

3x+ y − z + u2 = 0

x− y + 2z + u = 0

2x+ 2y − 3z + 2u = 0

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x.
What can you say (using the implicit function theorem) about solving them for x, y, z in
terms of u?

4.11 Let F denote the vector field (x2 − z2, 2xy, z) on R3. Compute in two different ways the
surface integral ∫ ∫

T
F · ndA

where T denotes the surface of the tetrahedron bounded by x ≥ 0, y ≥ 0, z ≥ 0, x+y+z ≤ 1
and n denotes the outward normal to T . Use the two answers to verify the divergence
theorem.

4.12 Compute in two different ways the line integral∮
ydx− xdy + z2dz

where C is the intersection of the paraboloid z = x2 + 4y2 with the cylinder x2 + y2 = 9,
traversed counter-clockwise when viewed from the point (0, 0, 100). Use the two answers
to verify Stokes’ theorem

4.13 A smooth function F on the (open) unit disc in R2 satisfies F (0, 0) = (0, 0) and ‖F (x)‖ ≥
3‖x‖.
(a) Show that F is one to one in a neighborhood of the origin.
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(b) Let F = (u, v) in components. Show that, for all a < 1, the integral

1

2π

∮
‖r‖=a

u∇v − v∇u
u2 + v2

· dr

is an integer and this value does not depend on a.

(c) Can you determine the value of the integral in terms of the Jacobian A = DF (0, 0) of
the mapping F at the origin?

(d) Can you construct a smooth function F on the (open) unit disc in R2 satisfying
F (0, 0) = (0, 0), F (x) 6= (0, 0) for x 6= (0, 0), such that the value of the integral is 2?

4.14 M : R2 → R2 is the mapping

M(x, y) = (2x− sin(xy),
1

3
y + x2 − y2).

(a) Show that M is invertible in a neighborhood of the origin.

(b) The unstable manifold of the origin is the set Γu = {(x, y)|M−n(x, y)→ (0, 0) as n→
∞}. Show that Γu is invariant under M .

(c) Show that, there is a unique function f such that f(x) → 0 when x → 0, and the
unstable manifold is given by the graph of the function f for sufficiently small x, i.e.

Γu ∩Bε(0, 0) = {(x, f(x))||x| < ε} ∩Bε(0, 0)

5 Complex analysis

5.1 Let f(z) be analytic at c. Write f ′(c) = reiθ. Write z = x+iy and f(z) = u(x, y)+iv(x, y).
We can think of f as a map (u(x, y), v(x, y) from R2 → R2. The total derivative of this
map at c is a two by two matrix. Find it in terms of r and θ. Express the direction
derivatives of the map on R2 in terms of r and θ.

5.2 Define

f(z) =

∞∑
k=1

ak(z − z0)k

(a) If the radius of convergence of the above power series is r, then show that the radii
of convergence for the series obtained by differentiating and integrating the above series
termwise is also r.

(b) Show that the termwise differentiated series converges uniformly on every disk of the
form |z − z0| ≤ ρ < r. Use this to show that f(z) is given by termwise differentiating the
above series, for any compact subset of the disk |z − z0| < r.

5.3 Suppose that γ is a piecewise smooth positively, counterclockwise oriented, simple closed
curve. Use Green’s Theorem to show that the value of the integral∮

γ

dz

z − p

equals 0 if p is outside γ and 2πi if p is inside γ.
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5.4 Let f(z) be analytic at z0. Prove that for sufficiently small ε,

1

2πi

∮
|z−z0|=ε

f(z)

(z − z0)n
dz =

f (n−1)(c)

(n− 1)!

The contour is the circle centered at z0 with radius ε traversed in the counterclockwise
direction. This is a standard theorem in complex analysis books. The exercise is to prove
it directly from the statement of Cauchy’s theorem given in the notes. Hint: power series.

5.5 If f(z) is analytic on the closed disk B(z0, r), show that there is a constant C such that
the derivatives of f at z0 can be bounded by∣∣∣f (n)(z0)∣∣∣ ≤ Cn!

rn+1

5.6 For each of the following functions f and z0, determine if the function has a pole or essential
singularity at z0. In the case of a pole determine the order of the pole and the principal
part.

(a) f(z) = 1
z sin(z) , z0 = 0

(b) f(z) = 1
(z2+1)2

, z0 = i

(c) f(z) = exp(−1/z), z0 = 0.

(d) f(z) = tan2(z), z0 = π/2.

5.7 A Möbius transformation , or a fractional linear transformation, is a mapping of the form

w = f(z) =
az + b

cz + d

where a, b, c, d ∈ C. This can be extended to the Riemann sphere = C ∪ {∞}

f(∞) = a/c, f(−d/c) =∞

(a) Show that the Mobius transformations form a group.

(b) Show that the Mobius transformations map circles to circles on the Riemann sphere
(Note: A straight line on C is considered a circle through ∞ on the Riemann sphere).
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