How to speed up your tensor product finite element code without really trying

Andrew Gillette
 University of Arizona

joint work with

Tyler Kloefkorn, National Academy of Sciences
Victoria Sanders, University of Arizona

Table of Contents

(1) Serendipity methods: a review of their potential
(2) Recent mathematical advances in serendipity theory
(3) Three challenges facing large-scale implementation

Outline

(9) Serendipity methods: a review of their potential

(2) Recent mathematical advances in serendipity theory

(3) Three challenges facing large-scale implementation

The original "serendipity phenomenon"

Finite element method for $\Delta u=0$.
Boundary data: $\sin (x) e^{y}$
Domain: $[0,3]^{2}$, with $\ell \times \ell$ square grid.

Quadratic	ℓ	DoFs	$\left\\|u-u_{h}\right\\|_{2}$	ratio	order	$\left\\|\nabla u-\nabla u_{h}\right\\|_{2}$	ratio	order
tensor product	2	25	$4.2029 \mathrm{e}-01$			$1.9410 \mathrm{e}+00$		
element:	4	81	$5.7476 \mathrm{e}-02$	7.313	2.870	$5.0683 \mathrm{e}-01$	3.830	1.937
	8	289	$7.3802 \mathrm{e}-03$	7.788	2.961	$1.2823 \mathrm{e}-01$	3.952	1.983
	16	1089	$9.2909 \mathrm{e}-04$	7.943	2.990	$3.2157 \mathrm{e}-02$	3.988	1.996
	32	4225	$1.1635 \mathrm{e}-04$	7.986	2.997	$8.0455 \mathrm{e}-03$	3.997	1.999

ℓ	DoFs	$\left\\|u-u_{h}\right\\|_{2}$	ratio	order
2	21	$5.6921 \mathrm{e}-01$	0.000	0.000
4	65	$6.0711 \mathrm{e}-02$	9.376	3.229
8	225	$7.4447 \mathrm{e}-03$	8.155	3.028
16	833	$9.3040 \mathrm{e}-04$	8.002	3.000
32	3201	$1.1637 \mathrm{e}-04$	7.995	2.999

$\left\\|\nabla u-\nabla u_{h}\right\\|_{2}$	ratio	order
$2.4006 \mathrm{e}+00$	0.000	0.000
$5.3156 \mathrm{e}-01$	4.516	2.175
$1.2947 \mathrm{e}-01$	4.106	2.038
$3.2221 \mathrm{e}-02$	4.018	2.007
$8.0491 \mathrm{e}-03$	4.003	2.001

The original "serendipity" phenomenon

Finite element method for $\Delta u=0$.
Boundary data: $\sin (x) e^{y}$
Domain: $[0,3]^{2}$, with $\ell \times \ell$ square grid.

\# Global DoFs

How much of a savings in DoFs can we get for large r ?

Serendipity per-element DoF savings grow with r

$\rightarrow \quad$ DoFs per \mathcal{Q}_{r}^{-}(scalar) element in $\operatorname{dim} n=(r+1)^{n}$
\rightarrow DoFs per \mathcal{S}_{r} (scalar) element in $\operatorname{dim} n=\mathcal{O}\left(r^{n} / n!\right)$
$\rightarrow \quad$ In 2D, for large r, \mathcal{Q}_{r} has ≈ 2 times as many DoFs per element as \mathcal{S}_{r}
$\rightarrow \quad$ In 3D, for large r, \mathcal{Q}_{r} has ≈ 5.8 times as many DoFs per element as \mathcal{S}_{r}, including more than 2 times as many DoFs shared between elements!

Additional potential savings for solvers

Patch-based solvers depend on a stencil of DoFs around each vertex in a mesh. Stencils for \mathcal{P}_{3} on a triangular mesh and \mathcal{S}_{3} on a quad mesh are shown.
\hookrightarrow from a proposal with Rob Kirby (Baylor U.); currently under review

Ex: In 3D, a \mathcal{Q}_{5} patch has ≈ 12 times the number of DoFs as a \mathcal{S}_{5} patch
\Longrightarrow a quadratic order complexity solver with \mathcal{Q}_{5} patches would have ≈ 144 times longer run times than one with \mathcal{S}_{5} patches!

Takeaway: robustly implementing serendipity elements should allow significant reduction in computational cost with no loss in order of accuracy.

Outline

(1) Serendipity methods: a review of their potential

(2) Recent mathematical advances in serendipity theory
(3) Three challenges facing large-scale implementation

Two key insights from Arnold and Awanou

\rightarrow Scalar serendipity elements exist for any order $r \geq 1$ in any dimension $n \geq 2$.
ARNOLD, AWANOU "The serendipity family of finite elements ", Foundations of Computational Mathematics, 2011

$$
r=2
$$

$r=3$

$r=4$

$r=5$

$r=6$
\rightarrow Scalar serendipity elements are part of a family of finite element differential forms.
Arnold, Awanou "Finite element differential forms on cubical meshes", Mathematics of Computation, 2013

Ex: $\mathcal{S}_{1} \Lambda^{2}\left(\square_{3}\right)$ is an element for

$$
r=1 \quad \rightarrow \quad \text { linear order of error decay }
$$

$k=2 \rightarrow$ conformity in $\Lambda^{2}\left(\mathbb{R}^{3}\right) \rightsquigarrow H$ (div)
$n=3 \rightarrow$ domains in \mathbb{R}^{3}

The 'Periodic Table of the Finite Elements'

Arnold, LOGG, "Periodic table of the finite elements," SIAM News, 2014.

Classification of many common conforming finite element types.
$n \rightarrow$ Domains in \mathbb{R}^{2} (top half) and in \mathbb{R}^{3} (bottom half)
$r \rightarrow$ Order 1,2,3 of error decay (going down columns)
$k \rightarrow$ Conformity type $k=0, \ldots, n$ (going across a row)
Geometry types: Simplices (left half) and cubes (right half).

Method selection and cochain complexes

$\subset H($ div $)$

$\subset L^{2}$

Provably stable method converges to $\mathrm{u}=x(1-x) y(1-y)$

Stable pairs of elements for mixed Hodge-Laplacian problems are found by choosing consecutive spaces in compatible discretizations of the L^{2} deRham Diagram.

$$
H^{1} \xrightarrow[\text { grad }]{\nabla}>H(\text { curl }) \xrightarrow[\text { curl }]{\nabla \times}>H(\text { div }) \xrightarrow[\text { div }]{\nabla}>L^{2}
$$

vector Poisson
Maxwell's eqn's
σ
μ

Darcy / Poisson
b
u

Stable pairs are found from consecutive entries in a cochain complex.

Exact cochain complexes found in the table

- Cochain complexes occur either horizontally or diagonally in the table as shown.
- Methods can be chosen from \mathcal{P} or \mathcal{P}^{-}(simplices) and \mathcal{Q}^{-}or \mathcal{S} (cubes).
- Mysteriously, the DoF count for mixed methods from the \mathcal{P}^{-}spaces is smaller than those from the \mathcal{P} spaces, while the opposite is true for \mathcal{Q}^{-}and \mathcal{S} spaces.

The 5th column: Trimmed serendipity spaces

A new column for the PToFE: the trimmed serendipity elements.
$\mathcal{S}_{r}^{-} \Lambda^{k}\left(\square_{n}\right)$ denotes
approximation order r, subset of k-form space $\Lambda^{k}(\Omega)$, use on meshes of n-dim'l cubes.

Defined for any $n \geq 1,0 \leq k \leq n, r \geq 1$
Identical or analogous properties to all the other colummns in the table.

Computational advantage:
Fewer DoFs for mixed methods than both tensor product and serendipity counterparts.

[^0]
Mixed Method dimension comparison 1

Mixed method for Darcy problem:

$$
\begin{aligned}
\mathbf{u}+K \nabla p & =0 \\
\operatorname{div} \mathbf{u}-f & =0
\end{aligned}
$$

We compare DoF counts among the three families for use on meshes of affinelymapped squares or cubes, when a conforming method with (at least) order r decay in the approximation of p, \mathbf{u}, and div \mathbf{u} is desired.

Total \# of degrees of freedom on a square $(n=2)$:

r	$\left\|\mathcal{Q}_{r}^{-} \Lambda^{1}\right\|+\left\|\mathcal{Q}_{r}^{-} \Lambda^{2}\right\|$	$\left\|\mathcal{S}_{r} \Lambda^{1}\right\|+\left\|\mathcal{S}_{r-1} \Lambda^{2}\right\|$	$\left\|\mathcal{S}_{r}^{-} \Lambda^{1}\right\|+\left\|\mathcal{S}_{r}^{-} \Lambda^{2}\right\|$
1	$4+1=5$	$8+1=9$	$4+1=5$
2	$12+4=16$	$14+3=17$	$10+3=13$
3	$24+9=33$	$22+6=28$	$17+6=23$

Total \# of degrees of freedom on a cube $(n=3)$:

r	$\left\|\mathcal{Q}_{r}^{-} \Lambda^{2}\right\|+\left\|\mathcal{Q}_{r}^{-} \Lambda^{3}\right\|$	$\left\|\mathcal{S}_{r} \Lambda^{2}\right\|+\left\|\mathcal{S}_{r-1} \Lambda^{3}\right\|$	$\left\|\mathcal{S}_{r}^{-} \Lambda^{2}\right\|+\left\|\mathcal{S}_{r}^{-} \Lambda^{3}\right\|$
1	$6+1=7$	$18+1=19$	$6+1=7$
2	$36+8=44$	$39+4=43$	$21+4=25$
3	$108+27=135$	$72+10=82$	$45+10=55$

Mixed Method dimension comparison 2

Mixed method for Darcy problem:

$$
\begin{aligned}
\mathbf{u}+K \nabla p & =0 \\
\operatorname{div} \mathbf{u}-f & =0
\end{aligned}
$$

Interior DoFs are reduced from tensor product, to serendipity, to trimmed serendipity:
\# of interior degrees of freedom on a square $(n=2)$:

r	$\left\|\mathcal{Q}_{r}^{-} \Lambda_{0}^{1}\right\|+\left\|\mathcal{Q}_{r}^{-} \Lambda_{0}^{2}\right\|$	$\left\|\mathcal{S}_{r} \Lambda_{0}^{1}\right\|+\left\|\mathcal{S}_{r-1} \Lambda_{0}^{2}\right\|$	$\left\|\mathcal{S}_{r}^{-} \Lambda_{0}^{1}\right\|+\left\|\mathcal{S}_{r}^{-} \Lambda_{0}^{2}\right\|$
1	$0+1=1$	$0+1=1$	$0+1=1$
2	$4+4=8$	$2+3=5$	$2+3=5$
3	$12+9=21$	$6+6=12$	$5+6=11$

\# of interior degrees of freedom on a cube $(n=3)$:

r	$\left\|\mathcal{Q}_{r}^{-} \Lambda_{0}^{2}\right\|+\left\|\mathcal{Q}_{r}^{-} \Lambda_{0}^{3}\right\|$	$\left\|\mathcal{S}_{r} \Lambda_{0}^{2}\right\|+\left\|\mathcal{S}_{r-1} \Lambda_{0}^{3}\right\|$	$\left\|\mathcal{S}_{r}^{-} \Lambda_{0}^{2}\right\|+\left\|\mathcal{S}_{r}^{-} \Lambda_{0}^{3}\right\|$
1	$0+1=1$	$0+1=1$	$0+1=1$
2	$12+8=20$	$3+4=7$	$3+4=7$
3	$54+27=81$	$12+10=22$	$9+10=19$

Mixed Method dimension comparison 3

Mixed method for Darcy problem:

$$
\begin{aligned}
\mathbf{u}+K \nabla p & =0 \\
\operatorname{div} \mathbf{u}-f & =0
\end{aligned}
$$

Assuming interior DoFs could be dealt with efficiently (e.g. by static condensation), trimmed serendipity elements still have the fewest DoFs:
\# of interface (edge) degrees of freedom on a square $(n=2)$:

r	$\left\|\mathcal{Q}_{r}^{-} \Lambda^{1}\left(\partial \square_{2}\right)\right\|$	$\left\|\mathcal{S}_{r} \Lambda^{1}\left(\partial \square_{2}\right)\right\|$	$\left\|\mathcal{S}_{r}^{-} \Lambda^{1}\left(\partial \square_{2}\right)\right\|$
1	4	8	4
2	8	12	8
3	12	16	12

\# of interface (edge+face) degrees of freedom on a cube $(n=3)$:

r	$\left\|\mathcal{Q}_{r}^{-} \Lambda^{2}\left(\partial \square_{3}\right)\right\|$	$\left\|\mathcal{S}_{r} \Lambda^{2}\left(\partial \square_{3}\right)\right\|$	$\left\|\mathcal{S}_{r}^{-} \Lambda^{2}\left(\partial \square_{3}\right)\right\|$
1	6	18	6
2	24	36	18
3	54	60	36

Outline

(1) Serendipity methods: a review of their potential

(2) Recent mathematical advances in serendipity theory

(3) Three challenges facing large-scale implementation

Three challenges facing large-scale implementation

Given their potential, why haven't serendipity elements seen wider use?
(1) Construction of "nice" basis functions is subtle
\rightarrow Significant focus of my recent work
(2) Correct usage on unstructured quad/hex meshes is non-trivial
\rightarrow Feasible solutions are known
(3) Need to work with established multi-purpose FEM codes
\rightarrow Requires careful coordination with code experts

Construction of "nice" basis functions

$\mathcal{S}_{r}^{-} \Lambda^{k}\left(\square_{n}\right)$ is a space of differential k-forms whose coefficients are polynomials in \mathbb{R}^{n}.

$$
\mathcal{S}_{r}^{-} \Lambda^{k}=\mathcal{P}_{r}^{-} \Lambda^{k} \oplus \mathcal{J}_{r} \Lambda^{k} \oplus d \mathcal{J}_{r} \Lambda^{k-1}
$$

Polynomial coefficients in each summand:
$\mathcal{P}_{r}^{-} \Lambda^{k}$: anything up to degree $r-1$ and some degree r
$\mathcal{J}_{r} \Lambda^{\kappa}$: certain polynomials whose degree is between $r+1$ and $r+n-k-1$
$d \mathcal{J}_{r} \Lambda^{k-1}$: certain polynomials whose degree is between r and $r+n-k-2$
The "regular" serendipity space has an analogous decomposition:

$$
\mathcal{S}_{r} \Lambda^{k}=\mathcal{P}_{r} \Lambda^{k} \oplus \mathcal{J}_{r} \Lambda^{k} \oplus d \mathcal{J}_{r+1} \Lambda^{k-1}
$$

This decomposition provides a direct sum into some precise but elaborate subspaces:

$$
\begin{aligned}
\mathcal{J}_{r} \Lambda^{k}\left(\mathbb{R}^{n}\right) & :=\sum_{l \geq 1} \kappa \mathcal{H}_{r+l-1, /} \Lambda^{k+1}\left(\mathbb{R}^{n}\right), \\
\text { where } \quad \mathcal{H}_{r,} \Lambda^{k}\left(\mathbb{R}^{n}\right) & :=\left\{\omega \in \mathcal{H}_{r} \Lambda^{k}\left(\mathbb{R}^{n}\right) \mid \operatorname{ldeg} \omega \geq l\right\}, \\
\text { where } \quad \operatorname{ldeg}\left(x^{\alpha} d x_{\sigma}\right) & :=\#\left\{i \in \sigma^{*}: \alpha_{i}=1\right\} .
\end{aligned}
$$

Building a computational basis

Goal: find a computational basis for $\mathcal{S}_{1} \Lambda^{1}\left(\square_{3}\right)$:

- Must be H (curl)-conforming
- Must have 24 functions, 2 associated to each edge of cube
- Must recover constant and linear approx. on each edge
- The approximation space contains:
(1) Any polynomial coefficient of at most linear order:
$\{1, x, y, z\} \times\{d x, d y, d z\} \rightarrow 12$ forms
(2) Certain forms with quadratic or cubic order coefficients shown in table at left $\rightarrow 12$ forms
- For constants, use "obvious" functions:

$$
\{(y \pm 1)(z \pm 1) d x, \quad(x \pm 1)(z \pm 1) d y, \quad(x \pm 1)(y \pm 1) d z\}
$$

e.g. $(y+1)(z+1) d x$ evaluates to zero on every edge except $\{y=1, z=1\}$ where it is $\equiv 4 \rightarrow$ constant approx.
Also, $(y+1)(z+1) d x$ can be written as a linear combo, by using the first three forms at left to get the $y z d x$ term

Building a computational basis

- For constant approx on edges, we used:
$\{(y \pm 1)(z \pm 1) d x,(x \pm 1)(z \pm 1) d y, \quad(x \pm 1)(y \pm 1) d z\}$
- Guess for linear approx on edges:
$\{x(y \pm 1)(z \pm 1) d x, \quad y(x \pm 1)(z \pm 1) d y, \quad z(x \pm 1)(y \pm 1) d z\}$
e.g. $x(y+1)(z+1) d x$ evaluates to $4 x$ on $\{y=1, z=1\}$.
- Unfortunately: $x(y+1)(z+1) d x \notin \mathcal{S}_{1} \Lambda\left(\square_{3}\right)!$

Why? $x(y+1)(z+1) d x=(x y z+x y+x z+x) d x$
but $x y z d x$ only appears with other cubic order coefficients!

- Remedy: add $d y$ and $d z$ terms that vanish on all edges.

Building a computational basis

$d x$	$d y$	$d z$
$-y z$	$x z$	0
0	$-x z$	$x y$
$y z$	$x z$	$x y$
$2 x y$	x^{2}	0
$2 x z$	0	x^{2}
y^{2}	$2 x y$	0
0	$2 y z$	y^{2}
z^{2}	0	$2 x z$
0	z^{2}	$2 y z$
$2 x y z$	$x^{2} z$	$x^{2} y$
$y^{2} z$	$2 x y z$	$x y^{2}$
$y z^{2}$	$x z^{2}$	$2 x y z$

Computational basis element associated to $\{y=1, z=1\}$:

$$
2 x(y+1)(z+1) d x+(z+1)\left(x^{2}-1\right) d y+(y+1)\left(x^{2}-1\right) d z
$$

\checkmark Evaluates to $4 x$ on $\{y=1, z=1\}$ (linear approx.)
\checkmark Evaluates to 0 on all other edges
\checkmark Belongs to the space $\mathcal{S}_{1} \Lambda\left(\square_{3}\right)$:

$2 x y z d x$	+	$x^{2} z d y$	+	$x^{2} y d z$
$2 x y d x$	+	$x^{2} d y$	+	$0 d z$
$2 x z d x$	+	$0 d y$	+	$x^{2} d z$
$2 x d x$	+	$(-z-1) d y$	+	$(-y-1) d z$

\rightarrow summation and factoring yields the desired form)
There are 11 other such functions, one per edge. We have:

$$
\begin{array}{rccc}
\mathcal{S}_{1} \Lambda\left(\square_{3}\right) & =\underbrace{E_{0} \Lambda^{1}\left(\square_{3}\right)}_{\begin{array}{c}
\text { "obvious" basis for } \\
\text { constant approx }
\end{array}} & \oplus \underbrace{\tilde{E}_{1} \Lambda^{1}\left(\square_{3}\right)}_{\begin{array}{c}
\text { modified basis for } \\
\text { linear approx }
\end{array}} \\
\operatorname{dim} 24 & = & 12 & 12
\end{array}
$$

A complete table of computational bases

[^1]
An alternate approach to basis construction

Color DoFs by type ($\mathcal{S}_{5} \wedge^{0}$ shown)

Associate to a "lower set" of lattice points

Re-associate to the element geometry

Symmetrize, and interpolate partial derivatives at edge and face midpoints

Floater, G. "Nodal Bases for the Serendipity Family of Finite Elements."
Foundations of Computational Mathematics, 17:4, 2017.
G., Gross, PLACKOWSKI "Numerical studies of serendipity and tensor product elements for eigenvalue problems."

Involve, 11:4, 2018.

An alternate approach to basis construction

This approach allows you to express serendipity basis functions
as linear combinations of tensor product basis functions:

Floater, G. "Nodal Bases for the Serendipity Family of Finite Elements."
Foundations of Computational Mathematics, 17:4, 2017.
G., Gross, PLACKOwski "Numerical studies of serendipity and tensor product elements for eigenvalue problems."

Involve, 11:4, 2018.

Correct usage on unstructured quad/hex meshes

Quadratic serendipity elements, mapped non-affinely, are only expected to converge at the rate of linear elements.

Arnold, Boffi, Falk, "Approximation by Quadrilateral Finite Elements,"
Mathematics of Computation, 2002
linear
reference physical $\left\|u-u_{h}\right\|_{L^{2}} \quad\left\|\nabla\left(u-u_{h}\right)\right\|_{L^{2}}$
quadratic serendipity

$$
O\left(h^{2}\right)
$$

$$
O(h)
$$

$O\left(h^{2}\right)$
O (h)
quadratic tensor prod.

Extensions to vector-valued and higher dimensions:
Arnold, Boffi, Falk, "Quadrilateral H(div) Finite Elements," SINUM, 2005.
Arnold, Boffi, Bonizzoni, "Finite element differential forms on curvilinear cubic meshes," Numer. Math., 2014

Basis functions on physical elements

Instead mapping to a reference element, use basis functions $\psi_{i j}$ defined on physical elements:

$$
u_{h}=\iota_{q} u:=\sum_{i=1}^{n} u\left(\mathbf{v}_{i}\right) \psi_{i i}+u\left(\frac{\mathbf{v}_{i}+\mathbf{v}_{i+1}}{2}\right) \psi_{i(i+1)}
$$

Non-affine bilinear mapping

	$\left\\|u-u_{h}\right\\|_{L^{2}}$		$\left\\|\nabla\left(u-u_{h}\right)\right\\|_{L^{2}}$	
n	error	rate	error	rate
2	$5.0 \mathrm{e}-2$		$6.2 \mathrm{e}-1$	
4	$6.7 \mathrm{e}-3$	2.9	$1.8 \mathrm{e}-1$	1.8
8	$9.7 \mathrm{e}-4$	2.8	$5.9 \mathrm{e}-2$	1.6
16	$1.6 \mathrm{e}-4$	2.6	$2.3 \mathrm{e}-2$	1.4
32	$3.3 \mathrm{e}-5$	2.3	$1.0 \mathrm{e}-2$	1.2
64	$7.4 \mathrm{e}-6$	2.1	$4.96 \mathrm{e}-3$	1.1

Physical element basis functions:

	$\left\\|u-u_{h}\right\\|_{L^{2}}$		$\left\\|\nabla\left(u-u_{h}\right)\right\\|_{L^{2}}$	
n	error	rate	error	rate
2	$2.34 \mathrm{e}-3$		$2.22 \mathrm{e}-2$	
4	$3.03 \mathrm{e}-4$	2.95	$6.10 \mathrm{e}-3$	1.87
8	$3.87 \mathrm{e}-5$	2.97	$1.59 \mathrm{e}-3$	1.94
16	$4.88 \mathrm{e}-6$	2.99	$4.04 \mathrm{e}-4$	1.97
32	$6.13 \mathrm{e}-7$	3.00	$1.02 \mathrm{e}-4$	1.99
64	$7.67 \mathrm{e}-8$	3.00	$2.56 \mathrm{e}-5$	1.99

Rand, G., BaJAJ "Quadratic Serendipity Finite Elements on Polygons Using Generalized Barycentric Coordinates." Mathematics of Computation, 83:290, 2014.

The Arbogast-Correa technique

A finite element space on a general quadrilateral is built in two parts:

- Apply Piola mapping to functions associated to boundary of reference element.
- Define functions on the physical element corresponding to interior degrees of freedom in a way that ensures relevant polynomial approximation properties.

Arbogast, Correa "Two families of H (div) mixed finite elements on quadrilaterals of minimal dimension," SIAM J. Numerical Analysis, 2016

The virtual element technique

PRESERVING \boldsymbol{P}_{k}

PRESERVING $\boldsymbol{P}_{k}+\boldsymbol{x} \boldsymbol{P}_{k}$
\rightarrow Analogues of conforming finite element spaces on squares can be treated as virtual elements.
\rightarrow Explicit basis functions are not needed to implement the method.
\rightarrow Related polygonal element methods (HHO, HDG, WG...) may offer similar approaches.
Beirão da Veiga, Brezzi, Marini, Russo "Serendipity face and edge VEM spaces" Rendiconti Lincei-Matematica e Applicazioni, 2017.

Open source finite element software packages

+ deal.II

\rightarrow open source C++ program library for adaptive FEM, in development since 1998
\rightarrow designed to support quad/hex meshes and h / p adaptivity
\rightarrow data structures are well-documented but not easy to introduce new element types without in-depth knowledge of the code

\rightarrow FEM toolkits that use Unified Form Language to define a weak form and create local assembly kernels
\rightarrow FEniCS passes kernels to DOLFIN's C++ libraries and PETSc to do solves
\rightarrow Firedrake creates intermediate data structures that are then passed to parallel schedulers, including notions like "dofs" and "interior facet" that more easily accommodate extensibility

None of these packages support (trimmed) serendipity elements yet. . .

[^2]
Acknowledgments

Mahalo to the organizers for the invitation!
Collaborators on this work

Snorre Christiansen	U. Oslo
Michael Floater	U. Oslo

Rob Kirby Baylor University

Tyler Kloefkorn \quad National Academies Program Officer, Math (former postdoc)
Victoria Sanders U. Arizona (undergrad math major)
Research Funding
Supported in part by the National Science Foundation grant DMS-1522289.
Slides and Pre-prints
http://math.arizona.edu/~agillette/

[^0]: G., Kloefkorn "Trimmed Serendipity Finite Element Differential Forms." Mathematics of Computation, to appear, 2019.

[^1]: G., Kloefkorn, Sanders "Computational serendipity and tensor product finite element differential forms."

 SMAI J. Computational Mathematics, to appear, 2019.

[^2]: ALNÆES ET AL. "The FEniCS Project Version 1.5" Archive of Numerical Software, 2015
 Rathgeber et Al. "Firedrake: automating the finite element method by composing abstractions" ACM Transactions on Mathematical Software, 2016.
 Bangerth et al. "The deal. ii Library, Version 8.4," Journal of Numerical Mathematics, 2016

