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Motivation: Neuronal Modeling

Neurons in vivo are packed very densely and have many small
geometric features known to affect voltage decay.

Neuron length ∼ 100 µm; Neuropil dataset ∼ 2 (µm)3; in-plane resolution ∼ 5-10 nm
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Formal Problem Statement

Input (for a K component forest):

1 M horizontal planes Z1, . . . ZM . (Zm given by z = zm)

2 K functions g1
m, . . . , gK

m : R
2 → R such that

SK
k=1{gk

m = 0} is a 1-manifold.

3 Contours {ck
m} of the set {gk

m = 0}.

4 An acyclic directed graph G with vertices {ck
m}, indicating connectivity.
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Formal Problem Statement

Input (for a K component forest):
1 M horizontal planes Z1, . . . ZM . (Zm given by z = zm)

2 K functions g1
m, . . . , gK

m : R
2 → R such that

SK
k=1{gk

m = 0} is a 1-manifold.

3 Contours {ck
m} of the set {gk

m = 0}.

4 An acyclic directed graph G with vertices {ck
m}, indicating connectivity.

Output K functions h1, . . . , hK : R
3 → R such that:

1 Each hk restricts to gk
m on Zm, i.e.

hk (x , y , zm) ≡ gk
m(x , y).

2 Each surface hk (x , y , z) = 0 is a compact, connected,
smooth 2-manifold with local connectivity
corresponding to the graph G.

3 The K component surface
QK

k=1 hk (x , y , z) = 0 is a
2-manifold, i.e. the component surfaces do not
intersect.
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Simplifying Assumptions

Assumptions for Reduction to Meshing:

1 Contours are simple polygons and can be refined if necessary.

2 A mesh of the polygonal contours satisfying the output properties is isotopic to a
smooth solution.

~=
isotopic
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The Multi-Component Difficulty

?+ =

Independent solutions to the reconstruction problem for each
component may produce topological or geometrical inaccuracies when
aggregated.
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Selected Prior Work on Single Component Problem

FUCHS, KEDEM AND USELTON Optimal surface reconstruction from planar contours
Communications of the ACM 20:10, 1977.

Seminal work in reconstruction from polygonal contours.

MEYERS, SKINNER AND SLOAN Surfaces from contours ACM Transactions on
Graphics 11:3, 1992.

Identified subproblems of correspondence, tiling, and branching.

BAREQUET AND SHARIR Piecewise-linear interpolation between polygonal slices
Symposium on Computational Geometry 1994.

Developed an algorithm for CT, MRI, and other medical applications.

BAJAJ, COYLE AND LIN Arbitrary topology shape reconstruction from planar cross
sections Graphic Models and Image Processing 58:6, 1996.

Expanded this algorithm by providing topological guarantees on the output.

We use this method for our approach.
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The Correspondence Problem

How should contours on adjacent slices connect?

Remark: This is resolved by the connectivity graph G in our case.
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The Tiling Problem

How should corresponding contours be tiled?

Z 1

Z 2

Definition: A slice chord is an edge connecting vertices on adjacent
slices. A tiling triangle is formed by two slice chords and a contour
edge.

What are the criteria of a “good” tiling?
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The Tiling Problem

Desired Tiling Criteria

1 The reconstructed surface forms a piecewise closed surface of polyhedra.

2 Any vertical line segment between two adjacent slices intersecting the
reconstructed surface does so at exactly one point or along exactly one line
segment.

L5
D

E

L
L1 L2 3 4LL

B

C
A

OK: not OK:

3 Resampling of the reconstructed surface on any slice reproduces the original
contours.

Remark: The last criterion implies that aside from contour refinement, any edges or

vertices added to the mesh must lie outside the Zi planes.
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The Tiling Problem Resolved

Let v be a vertex in contour c1
1 ⊂ Z1 corresponding to c1

2 ⊂ Z2.

Let T be a slice chord from v to c1
2 .

Let the ”prime” notation denote vertical projection to Z1.

Z 2

Z 1 1c 1

c 1
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The Tiling Problem Resolved

Theorem [Bajaj, Coyle, Lin 1996] :
If a tiling satisfies the three criteria, the following hold:

i) T ′ lies in exactly one of these regions:

1c 1v
1c 1v

ii) If v 6∈ c1
2
′

then T ′ lies in exactly one of these regions:

1c 1

c 1’
2

v
1c 1

c 1’
2

v

iii) If v ∈ c1
2
′

then T ′ lies in exactly one of these regions:

1c 1

c 1’
2

v 1c 1

c 1’
2

v
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The Tiling Problem Resolved

Tiling Algorithm [Bajaj, Coyle, Lin 1996] :

1 For each vertex v ∈ {c j
1}, make a list of all the slice chords that

could be formed to a vertex of {ck
2} (based on the resolution of the

correspondence problem).
2 Select the shortest length chord from this list which satisfies the

results of the Theorem.
3 If no chord from the list satisfies the theorem, tag the vertex as

“untiled.”
4 Collect boundaries of untiled regions for subsequent meshing

when resolving the branching problem.
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The Branching Problem

How should tiling be done when a contour in Z1 corresponds to more than one contour
in Z2?

To ensure the criteria are sastisfied, we add vertices to a plane half way between Z1

and Z2 and then mesh.
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The Medial Axis

For our approach, we will use the medial axis of the region exterior to the contours on
each slice.

Definition: The medial axis M of an open set O ⊂ R
n is the set of points x ∈ O for

which there are at least two closest points to x on the complement Oc .
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Algorithm

Idea: Compute the medial axis on each slice, scaffold it to a three dimensional
partitioning, and use this to detect and remove intersections between components.

MULTISURFRECON
“

{Zi},
n

c j
i

o

, {Pi}, G
”

(Pi = vertices of the contours c j
i )

1 Construct and partition medial axes on each slice.

2 Construct a medial surface.

3 Create single component surfaces.

4 Remove overlaps on intermediate planes.

5 Improve mesh quality.

For subsequent explanation, suppose G has only two components, yellow and green,

so that each c j
i is either a yellow contour (YC) or green contour (GC).
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Algorithm

1 Construct and partition medial axes on each slice.

Compute the Voronoi diagram Vor Pi of the sample points Pi of the contours on
slice i .

Discard all Voronoi edges intersecting the contours.

Discard all remaining vertices and edges interior to the contours.

The remaining vertices and edges approximate the medial axis M of
extracellular space.

Let EGY = {edges of M defined by a point of YC and a point of GC}
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Algorithm

2 Construct a medial surface.

Dilate the edges in EGY so that they form contours and color these contours red.

Create a partial, approximate medial surface MS by running the SINGLESURFRECON

code on EGY .

3 Create single component surfaces.
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Algorithm

4 Remove overlaps on intermediate planes.
Simple overlap:

Exotic overlap:

z i+1

z i,i+1

(a) (b) (c) (d)

z i
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Algorithm

5 Improve mesh quality.

Decimation: QSlim software by Michael Garland.

Shape Improvement: Geometric Flow library from LBIE Mesher, part of Volume
Rover software by CVC lab.
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Correctness Results

Lemma 1:
Suppose that for each i , there are no pairwise overlaps between the original contours
on plane Zi . Then the output of SINGLESURFRECON run on any subset of the original
contours is not self-intersecting.

Proof: This is a consequence of the three tiling criteria; if the original contours do not
overlap, SINGLESURFRECON cannot create self-intersections.

Lemma 2:
If there are no overlaps of any of the intermediate planes where branching occurs,
then the output of MULTISURFRECON has no self-intersections in the entire volume.
Conversely, if the output has no self-intersections in the volume, it does not have any
overlap on any intermediate plane.

Proof: ⇒: The output is a linear interpolation between consecutive planes. If the

contours do not overlap, their interpolation does not intersect.

⇐: If the output is not self-intersecting, the components cannot intersect on any plane.
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Initial Results
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