Quality Meshing of a Forest of Branching Structures

Andrew Gillette

joint work with

Chandrajit Bajaj

Department of Mathematics, Institute of Computational Engineering and Sciences University of Texas at Austin, Austin, Texas 78712, USA http://www.math.utexas.edu/users/agillette

Outline

- Motivation and Problem Statement
- Prior Work and Background
- 3 Approach
- Initial Results

Outline

- Motivation and Problem Statement
- Prior Work and Background
- 3 Approach
- Initial Results

Motivation: Neuronal Modeling

Neurons in vivo are packed very densely and have many small geometric features known to affect voltage decay.

Neuron length \sim 100 μ m; Neuropil dataset \sim 2 $(\mu$ m) 3 ; in-plane resolution \sim 5-10 nm

Formal Problem Statement

Input (for a *K* component forest):

- M horizontal planes $Z_1, ..., Z_M$. $(Z_m$ given by $z = z_m$)
- ② K functions $g_m^1, \ldots, g_m^K : \mathbb{R}^2 \to \mathbb{R}$ such that $\bigcup_{k=1}^K \{g_m^k = 0\}$ is a 1-manifold.
- 3 Contours $\{c_m^k\}$ of the set $\{g_m^k=0\}$.
- 4 An acyclic directed graph G with vertices $\{c_m^k\}$, indicating connectivity.

Formal Problem Statement

Input (for a *K* component forest):

- 1 M horizontal planes $Z_1, ..., Z_M$. (Z_m given by $z = z_m$)
- 2 K functions $g_m^1, \ldots, g_m^K : \mathbb{R}^2 \to \mathbb{R}$ such that $\bigcup_{k=1}^K \{g_m^k = 0\}$ is a 1-manifold.
- 3 Contours $\{c_m^k\}$ of the set $\{g_m^k=0\}$.
- 4 An acyclic directed graph G with vertices $\{c_m^k\}$, indicating connectivity.

Output K functions $h_1, \ldots, h_K : \mathbb{R}^3 \to \mathbb{R}$ such that:

- **1** Each h_k restricts to g_m^k on Z_m , i.e. $h_k(x, y, z_m) \equiv g_m^k(x, y)$.
- **2** Each surface $h_k(x, y, z) = 0$ is a compact, connected, smooth 2-manifold with local connectivity corresponding to the graph G.
- The K component surface $\prod_{k=1}^{K} h_k(x, y, z) = 0$ is a 2-manifold, i.e. the component surfaces do not intersect.

Simplifying Assumptions

Assumptions for Reduction to Meshing:

Ontours are simple polygons and can be refined if necessary.

A mesh of the polygonal contours satisfying the output properties is isotopic to a smooth solution.

The Multi-Component Difficulty

Independent solutions to the reconstruction problem for each component may produce topological or geometrical inaccuracies when aggregated.

Outline

- Motivation and Problem Statement
- Prior Work and Background
- 3 Approach
- Initial Results

Selected Prior Work on Single Component Problem

FUCHS, KEDEM AND USELTON Optimal surface reconstruction from planar contours Communications of the ACM 20:10, 1977.

Seminal work in reconstruction from polygonal contours.

MEYERS, SKINNER AND SLOAN Surfaces from contours ACM Transactions on Graphics 11:3, 1992.

Identified subproblems of correspondence, tiling, and branching.

BAREQUET AND SHARIR *Piecewise-linear interpolation between polygonal slices* Symposium on Computational Geometry 1994.

Developed an algorithm for CT, MRI, and other medical applications.

BAJAJ, COYLE AND LIN *Arbitrary topology shape reconstruction from planar cross sections* Graphic Models and Image Processing 58:6, 1996.

- Expanded this algorithm by providing topological guarantees on the output.
- We use this method for our approach.

The Correspondence Problem

How should contours on adjacent slices connect?

Remark: This is resolved by the connectivity graph G in our case.

The Tiling Problem

How should corresponding contours be tiled?

Definition: A **slice chord** is an edge connecting vertices on adjacent slices. A **tiling triangle** is formed by two slice chords and a contour edge.

What are the criteria of a "good" tiling?

The Tiling Problem

Desired Tiling Criteria

- 1 The reconstructed surface forms a piecewise closed surface of polyhedra.
- Any vertical line segment between two adjacent slices intersecting the reconstructed surface does so at exactly one point or along exactly one line segment.

not OK:

Resampling of the reconstructed surface on any slice reproduces the original contours.

Remark: The last criterion implies that aside from contour refinement, any edges or vertices added to the mesh must lie outside the Z_i planes.

The Tiling Problem Resolved

- Let v be a vertex in contour $c_1^1 \subset Z_1$ corresponding to $c_2^1 \subset Z_2$.
- Let T be a slice chord from v to c_2^1 .
- Let the "prime" notation denote vertical projection to Z_1 .

The Tiling Problem Resolved

Theorem [Bajaj, Coyle, Lin 1996]:

If a tiling satisfies the three criteria, the following hold:

i) T' lies in exactly one of these regions:

ii) If $v \notin {c_2^1}'$ then T' lies in exactly one of these regions:

iii) If $v \in c_2^{1'}$ then T' lies in exactly one of these regions:

The Tiling Problem Resolved

Tiling Algorithm [Bajaj, Coyle, Lin 1996]:

- For each vertex $v \in \{c_1^j\}$, make a list of all the slice chords that could be formed to a vertex of $\{c_2^k\}$ (based on the resolution of the correspondence problem).
- Select the shortest length chord from this list which satisfies the results of the Theorem.
- If no chord from the list satisfies the theorem, tag the vertex as "untiled."
- Collect boundaries of untiled regions for subsequent meshing when resolving the branching problem.

The Branching Problem

How should tiling be done when a contour in Z_1 corresponds to more than one contour in Z_2 ?

To ensure the criteria are sastisfied, we add vertices to a plane half way between Z_1 and Z_2 and then mesh.

The Medial Axis

For our approach, we will use the medial axis of the region exterior to the contours on each slice.

Definition: The *medial axis* \mathfrak{M} of an open set $O \subset \mathbb{R}^n$ is the set of points $x \in O$ for which there are at least two closest points to x on the complement O^c .

Outline

- Motivation and Problem Statement
- Prior Work and Background
- 3 Approach
- Initial Results

Idea: Compute the medial axis on each slice, scaffold it to a three dimensional partitioning, and use this to detect and remove intersections between components.

MULTISURFRECON $\left(\left\{Z_{i}\right\},\left\{c_{i}^{j}\right\},\left\{P_{i}\right\},G\right)$

 $(P_i = \text{vertices of the contours } c_i^j)$

- Construct and partition medial axes on each slice.
- Construct a medial surface.
- Create single component surfaces.
- Remove overlaps on intermediate planes.
- Improve mesh quality.

For subsequent explanation, suppose G has only two components, yellow and green, so that each c_i^j is either a yellow contour (YC) or green contour (GC).

- Construct and partition medial axes on each slice.
- Compute the Voronoi diagram Vor P_i of the sample points P_i of the contours on slice i.
- Discard all Voronoi edges intersecting the contours.
- Discard all remaining vertices and edges interior to the contours.
- ullet The remaining vertices and edges approximate the medial axis ${\mathfrak M}$ of extracellular space.
- Let E_{GY} = {edges of M defined by a point of YC and a point of GC}

Construct a medial surface.

Dilate the edges in $E_{\rm GY}$ so that they form contours and color these contours red. Create a partial, approximate medial surface $\mathfrak{M}S$ by running the SINGLESURFRECON code on $E_{\rm GY}$.

Oreate single component surfaces.

Remove overlaps on intermediate planes.

Simple overlap:

Exotic overlap:

Improve mesh quality.

- Decimation: QSlim software by Michael Garland.
- Shape Improvement: Geometric Flow library from LBIE Mesher, part of Volume Rover software by CVC lab.

Correctness Results

Lemma 1:

Suppose that for each i, there are no pairwise overlaps between the original contours on plane Z_i . Then the output of SINGLESURFRECON run on any subset of the original contours is not self-intersecting.

Proof: This is a consequence of the three tiling criteria; if the original contours do not overlap, SINGLESURFRECON cannot create self-intersections.

Lemma 2:

If there are no overlaps of any of the intermediate planes where branching occurs, then the output of MULTISURFRECON has no self-intersections in the entire volume. Conversely, if the output has no self-intersections in the volume, it does not have any overlap on any intermediate plane.

Proof: ⇒: The output is a linear interpolation between consecutive planes. If the contours do not overlap, their interpolation does not intersect.

 $\Leftarrow: \text{If the output is not self-intersecting, the components cannot intersect on any plane}.$

Outline

- Motivation and Problem Statement
- Prior Work and Background
- Approach
- Initial Results

Initial Results

Acknowledgements

- Kristen Harris, Daniel Johnston, and Clifton Rumsey, Section of Neurobiology and the Center for Learning and Memory, UT Austin.
- Justin Kinney, Thomas Bartol, and Terrence Sejnowski, Salk Institute.
- Thanks to Dr. Bajaj and Jose Rivera for their help in preparing the slides.
- This research was supported in part by NSF grants DMS-0636643, IIS-0325550, CNS-0540033 and NIH contracts P20-RR020647, R01-EB00487, R01-GM074258, R01-GM07308.
- This talk was presented at the International Meshing Roundtable 2008 in Pittsburgh, PA.