Quality Meshing of a Forest of Branching Structures

Andrew Gillette
joint work with
Chandrajit Bajaj

Department of Mathematics,
Institute of Computational Engineering and Sciences
University of Texas at Austin, Austin, Texas 78712, USA
http://iwww.math.utexas.edu/users/agillette

Computational Visualization Center, ICE S The University of Texas at Austin Oct 2008



@ Motivation and Problem Statement
@ Prior Work and Background

9 Approach

@ Initial Results

Computational Visualization Center, ICE S The University of Texas at Austin Oct 2008 2/28



@ Motivation and Problem Statement

Computational Visualization Center, ICE S The University of Texas at Austin Oct 2008 3/28



Motivation: Neuronal Modelin

Neurc;F]s in VIVO are packed very densely and have many small
geometric features known to affect voltage decay.

Neuron length ~ 100 pm; Neuropil dataset ~ 2 (um)?; in-plane resolution ~ 5-10 nm
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Formal Problem Statement

Input (for a K component forest):

Q M horizontal planes Z,,...Zy. (Zm given by z = zn)

@ K functions g, ..., g : R? — R such that X _, {gk = 0} is a 1-manifold.
© Contours {ck} of the set {gf, = 0}.

© An acyclic directed graph G with vertices {ck }, indicating connectivity.
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Formal Problem Statement

Input (for a K component forest):

© M horizontal planes Z;,...Zy. (Zm given by z = zy)

Q K functions g, . .., g : R> — R such that J{_, {gk = 0} is a 1-manifold.
© Contours {ck} of the set {g¥ = 0}.

© An acyclic directed graph G with vertices {ck}, indicating connectivity.

Output K functions hy, ..., hg : R® — R such that:

@ Each hy restricts to g& on Zn, i.e.
hk(X,y,Zm) = gr‘i’l(x7y)
© Each surface hx(X,y,z) = 0 is a compact, connected,

smooth 2-manifold with local connectivity
corresponding to the graph G.

@ The K component surface [T;_, hk(x,y,z) = 0isa
2-manifold, i.e. the component surfaces do not
intersect.
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Simplifying Assumptions

Assumptions for Reduction to Meshing:

© Contours are simple polygons and can be refined if necessary.
N0\ 200

© A mesh of the polygonal contours satisfying the output properties is isotopic to a
smooth solution.

isotopic
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The Multi-Component Difficulty

Loz I

Independent solutions to the reconstruction problem for each
component may produce topological or geometrical inaccuracies when
aggregated.
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@ Prior Work and Background
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Selected Prior Work on Single Component Problem

FucHs, KEDEM AND USELTON Optimal surface reconstruction from planar contours
Communications of the ACM 20:10, 1977.

@ Seminal work in reconstruction from polygonal contours.

MEYERS, SKINNER AND SLOAN Surfaces from contours ACM Transactions on
Graphics 11:3, 1992.

@ |dentified subproblems of correspondence, tiling, and branching.

BAREQUET AND SHARIR Piecewise-linear interpolation between polygonal slices
Symposium on Computational Geometry 1994.

@ Developed an algorithm for CT, MRI, and other medical applications.

BAJAJ, COYLE AND LIN Arbitrary topology shape reconstruction from planar cross
sections Graphic Models and Image Processing 58:6, 1996.

@ Expanded this algorithm by providing topological guarantees on the output.
@ We use this method for our approach.
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The Correspondence Problem

How should contours on adjacent slices connect?

S A

Remark: This is resolved by the connectivity graph G in our case.
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The Tiling Problem

How should corresponding contours be tiled?
/| w—an

Definition: A slice chord is an edge connecting vertices on adjacent

slices. A tiling triangle is formed by two slice chords and a contour
edge.

What are the criteria of a “good” tiling?
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The Tiling Problem

Desired Tiling Criteria

© The reconstructed surface forms a piecewise closed surface of polyhedra.

© Any vertical line segment between two adjacent slices intersecting the
reconstructed surface does so at exactly one point or along exactly one line
segment.

L, |L2 |Ls |La4 L
OK: : not OK: ,

Q Resampling of the reconstructed surface on any slice reproduces the original
contours.

Remark: The last criterion implies that aside from contour refinement, any edges or
vertices added to the mesh must lie outside the Z; planes.
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The Tiling Problem Resolved

@ Letv be a vertex in contour ¢} C Z; corresponding to ¢ C Z,.
@ Let T be a slice chord from v to c3.
@ Let the "prime” notation denote vertical projection to Z;.

1
C3

\Y
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The Tiling Problem Resolved

Theorem [Bajaj, Coyle, Lin 1996]:

If a tiling satisfies the three criteria, the following hold:
i) T’ lies in exactly one of these regions:

e ®f
VQ & VQ &
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The Tiling Problem Resolved

Tiling Algorithm [Bajaj, Coyle, Lin 1996]:

© For each vertex v € {cjl}, make a list of all the slice chords that
could be formed to a vertex of {c5} (based on the resolution of the
correspondence problem).

@ Select the shortest length chord from this list which satisfies the
results of the Theorem.

© If no chord from the list satisfies the theorem, tag the vertex as
“untiled.”

© Collect boundaries of untiled regions for subsequent meshing
when resolving the branching problem.
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The Branching Problem

How should tiling be done when a contour in Z; corresponds to more than one contour
in Z5?

_.
<7

To ensure the criteria are sastisfied, we add vertices to a plane half way between Z;
and Z, and then mesh.
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The Medial Axis

For our approach, we will use the medial axis of the region exterior to the contours on
each slice.

Definition: The medial axis 9t of an open set O C R" is the set of points x € O for
which there are at least two closest points to x on the complement O°.
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9 Approach
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Algorithm

Idea: Compute the medial axis on each slice, scaffold it to a three dimensional
partitioning, and use this to detect and remove intersections between components.

D \D \?D

) e TN\

MULTISURFRECON ({Zi}, {c,‘} AP} G) (P; = vertices of the contours c!)

© Construct and partition medial axes on each slice.
©@ Construct a medial surface.

© Create single component surfaces.

© Remove overlaps on intermediate planes.

Q Improve mesh quality.

For subsequent explanation, suppose G has only two components, yellow and green,
so that each c{ is either a yellow contour (YC) or green contour (GC).
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Algorithm

© Construct and partition medial axes on each slice.

@ Compute the Voronoi diagram Vor P; of the sample points P; of the contours on
slice i.

@ Discard all Voronoi edges intersecting the contours.

@ Discard all remaining vertices and edges interior to the contours.

@ The remaining vertices and edges approximate the medial axis 97t of
extracellular space.

@ Let Egy = {edges of M1 defined by a point of YC and a point of GC}
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Algorithm

@ Construct a medial surface.

Dilate the edges in Egy so that they form contours and color these contours red.
Create a partial, approximate medial surface 9S by running the SINGLESURFRECON
code on Egy.

© Create single component surfaces.
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Algorithm

© Remove overlaps on intermediate planes.
Simple overlap:

Exotic overlap:

o
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Algorithm

© Improve mesh quality.
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@ Decimation: QSlim software by Michael Garland.

@ Shape Improvement: Geometric Flow library from LBIE Mesher, part of Volume
Rover software by CVC lab.
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Correctness Results

Suppose that for each i, there are no pairwise overlaps between the original contours
on plane Z;. Then the output of SINGLESURFRECON run on any subset of the original
contours is not self-intersecting.

Proof: This is a consequence of the three tiling criteria; if the original contours do not
overlap, SINGLESURFRECON cannot create self-intersections.

If there are no overlaps of any of the intermediate planes where branching occurs,
then the output of MULTISURFRECON has no self-intersections in the entire volume.
Conversely, if the output has no self-intersections in the volume, it does not have any
overlap on any intermediate plane.

Proof: =: The output is a linear interpolation between consecutive planes. If the
contours do not overlap, their interpolation does not intersect.
<: If the output is not self-intersecting, the components cannot intersect on any plane.
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Outline

@ Initial Results
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