## Structure Preservation in (Trimmed) Serendipity Finite Element Methods

Andrew Gillette - University of Arizona

## joint work with

Snorre Christiansen, University of Oslo Tyler Kloefkorn, AAAS STP Fellow, hosted at NSF


## Table of Contents

(1) What are finite element methods?
(2) Key algebraic properties relating method types
(3) Structure-preservation for method discovery

## Outline

(9) What are finite element methods?

## (2) Key algebraic properties relating method types

(3) Structure-preservation for method discovery

## What are (efficient) finite element methods?

The finite element method is a way to numerically approximate the solution to PDEs.


CHARACTERIZE
Real analysis
PDEs


DISCRETIZE
Geometry \& Topology
Combinatorics

$$
\left[\begin{array}{ll}
\mathbb{A}
\end{array}\right][\mathbf{x}]=[\mathbf{b}]
$$

SOLVE
Linear algebra
Numerical analysis

Order of accuracy of computed solution $\rightarrow$ depends on local "basis" functions on each element.
Size of the linear system $\rightarrow$ depends on the number of mesh elements and the number of degrees of freedom associated to each element.

For computational efficiency: maximize order of accuracy while minimizing degrees of freedom.

## The Finite Element Method: 1D

Ex: The 1D Laplace equation: find $u(x) \in U$ s.t.

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x) \text { on }[a, b] \\
u(a)=0, \\
u(b)=0
\end{array}\right.
$$

Make the problem easier by making it (seemingly) harder ...
Weak form: find $u(x) \in U(\operatorname{dim} U=\infty)$ s.t.

$$
\int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x=\int_{a}^{b} f(x) v(x) d x, \quad \forall v \in V \quad(\operatorname{dim} V=\infty)
$$

... but we can now search a finite-dimensional space...
Discrete form: find $u_{h}(x) \in U_{h}\left(\operatorname{dim} U_{h}<\infty\right)$ s.t.

$$
\int_{a}^{b} u_{h}^{\prime}(x) v_{h}^{\prime}(x) d x=\int_{a}^{b} f(x) v_{h}(x) d x, \quad \forall v_{h} \in V_{h} \quad\left(\operatorname{dim} V_{h}<\infty\right)
$$

Typical approach: $U_{h}=V_{h}=$ (some space of piecewise polynomials)

## The Finite Element Method: 1D

Suppose $u_{h}(x)$ can be written as linear combination of $V_{h}$ elements:

$$
u_{h}(x)=\sum_{v_{i} \in v_{h}} u_{i} v_{i}(x)
$$

The discrete form becomes: find coefficients $u_{i} \in \mathbb{R}$ such that

$$
\sum_{i} \int_{a}^{b} u_{i} v_{i}^{\prime}(x) v_{j}^{\prime}(x) d x=\int_{a}^{b} f(x) v_{j}(x) d x, \quad \forall v_{j} \in \text { basis for } V_{h} \quad\left(\operatorname{dim} V_{h}<\infty\right)
$$

Written as a linear system:

$$
[\mathbb{K}]_{j i}[u]_{i}=[f]_{j}, \quad \forall v_{j} \in \text { basis for } V_{h}
$$

With some functional analysis we can prove: $\exists C>0$, independent of $h$, s.t.

where $h$ = maximum width of elements use in discretization
and $p$ depends on choice of space $V_{h}$

## Choosing a finite element type: 1D

Set $V_{h}:=$ piecewise polynomials, max degree $p$ on each segment, constrained to meet with $C^{0}$ continuity at vertices.

| $\left\{1, x, x^{2}, x^{3}\right\}$ <br> monomials |  | $\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right\}$ basis functions | associate to geometry | domain points |
| :---: | :---: | :---: | :---: | :---: |


| Cubic |
| :--- |
| Basis |
| on $[-1,1]$ |\(\left[\begin{array}{l}\psi_{1} <br>

\psi_{2} <br>
\psi_{3} <br>
\psi_{4}\end{array}\right]:=\left[$$
\begin{array}{c}(x-1)^{3} \\
(x-1)^{2}(x+1) \\
(x-1)(x+1)^{2} \\
(x+1)^{3}\end{array}
$$\right] \rightarrow(\) scale $) \rightarrow$
$\rightarrow$ Observe $\phi_{1}, \phi_{4}$ interpolate values at endpoints while $\phi_{2}, \phi_{3}$ are associated to "interior" approximation.
$\rightarrow$ Straightforward in 1D to generalize to arbitrary $p \geq 1$ or continuity $C^{1}, C^{2}$, etc.

## Cubic order tensor product basis functions: 2D

$$
\begin{aligned}
& \underbrace{\left\{\begin{array}{c}
x^{r} y^{s} \\
0 \leq r, s \leq 3
\end{array}\right\}}_{\mathcal{Q}_{3}\left([0,1]^{2}\right)} \\
& \text { monomials } \\
& \left\{\begin{array}{c}
\psi_{i j}(x, y) \\
1 \leq i, j \leq 4
\end{array}\right\} \\
& \text { basis functions } \\
& \longleftrightarrow \\
& \text { domain points }
\end{aligned}
$$

Approximation: For $0 \leq r, s \leq 3$, the monomial $x^{r} y^{s}$ is a linear combination of the $\psi_{i j}$.

Geometry:

$u=\left.u\right|_{(0,0)} \psi_{11}+\left.\partial_{x} u\right|_{(0,0)} \psi_{21}+\left.\partial_{y} u\right|_{(0,0)} \psi_{12}+\left.\partial_{x} \partial_{y} u\right|_{(0,0)} \psi_{22}+\cdots, \quad \forall u \in \mathcal{Q}_{3}\left([0,1]^{2}\right)$

## Which monomials do we really need for cubic order?



|  | total degree | superlinear degree |
| :---: | :---: | :---: |
| $x y^{2}$ | 3 | 2 |
| $x^{3} y$ | 4 | 3 |
| $x y^{3}$ | 4 | 3 |
| $x^{2} y^{2}$ | 4 | 4 |
| $x^{3} y^{2}$ | 5 | 5 |

$\rightarrow$ For cubic order accuracy, we only need all total degree cubics.
$\rightarrow$ To ensure a "smooth enough" solution, we expand to the set of all superlinear degree cubics.
$\rightarrow$ The notion of superlinear degree and its generalization for serendipity elements comes from Arnold, Awanou Found. Comp Math 2011, Math. Comp. 2013.

## Cubic serendipity basis functions in 2D and 3D

$$
\underbrace{\left\{\begin{array}{c}
x^{r} y^{s} \\
\text { sideg } \leq 3
\end{array}\right\}}_{\mathcal{S}_{3}\left([0,1]^{2}\right)}
$$

monomials



$\longleftrightarrow \quad$ domain points
Approximation: For $\operatorname{sldeg}\left(x^{r} y^{s}\right) \leq 3, x^{r} y^{s}$ is a linear combination of the $\vartheta_{\ell m}$.

Geometry:



$$
\begin{aligned}
a(x, y) & =\left.a\right|_{(0,0)} \vartheta_{11} \\
& +\left.\partial_{x} a\right|_{(0,0)} \vartheta_{21} \\
& +\left.\partial_{y} a\right|_{(0,0)} \vartheta_{12} \\
& +\cdots
\end{aligned}
$$

$$
\text { in 3D: }\left\{\begin{array}{c}
x^{r} y^{s} z^{t} \\
\text { sldeg } \leq 3
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\vartheta_{\ell m n} \\
\text { (limited indices) }
\end{array}\right\} \longleftrightarrow
$$

## Outline

## (1) What are finite element methods?

(2) Key algebraic properties relating method types

3 Structure-preservation for method discovery

## The 'Periodic Table of the Finite Elements'

Arnold, LOGG, "Periodic table of the finite elements," SIAM News, 2014.


Classification of many common conforming finite element types.
$n \rightarrow$ Domains in $\mathbb{R}^{2}$ (top half) and in $\mathbb{R}^{3}$ (bottom half)
$r \rightarrow$ Order 1,2,3 of error decay (going down columns)
$k \rightarrow$ Conformity type $k=0, \ldots, n$ (going across a row)
Geometry types: Simplices (left half) and cubes (right half).

## Classification of conforming methods

Conforming finite element method types can be broadly classified by three integers:
$n \rightarrow$ the spatial dimension of the domain
$r \rightarrow$ the order of error decay
$k \quad \rightarrow \quad$ the differential form order of the solution space


Ex: $\mathcal{Q}_{1}^{-} \Lambda^{2}\left(\square_{3}\right)$ is an element for
$n=3 \quad \rightarrow \quad$ domains in $\mathbb{R}^{3}$
$r=1 \quad \rightarrow \quad$ linear order of error decay
$k=2 \rightarrow$ conformity in $\Lambda^{2}\left(\mathbb{R}^{3}\right) \rightsquigarrow H$ (div)
$\mathcal{Q}_{1}^{-} \Lambda^{2}\left(\square_{3}\right)$ is part of the $\mathcal{Q}^{-}$'column' of elements, is defined on geometry $\square_{3}$ (i.e. a cube), has a 6 dimensional space of test functions, and has an associated set of 6 degrees of freedom that are unisolvent for the test function space.

## An abbreviated reading list (50 years of theory!)

Raviart, Thomas, "A mixed finite element method for 2nd order elliptic problems" Lecture Notes in Mathematics, $1977 \leftarrow 3172$ citations, including 150 from 2017!

NÉdÉLEC, "Mixed finite elements in $\mathbb{R}^{3}$," Numerische Mathematik, 1980
Brezzi, Douglas Jr., Marinı, "Two families of mixed finite elements for second order elliptic problems," Numerische Mathematik, 1985

NÉDÉLEC, "A new family of mixed finite elements in $\mathbb{R}^{3}$," Numerische Mathematik, 1986
Arnold, Falk, Winther "Finite element exterior calculus, homological techniques, and applications," Acta Numerica, 2006

Christiansen, "Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension," Numerische Mathematik, 2007

Arnold, Falk, Winther "Finite element exterior calculus: from Hodge theory to numerical stability," Bulletin of the AMS, 2010

Arnold, AWANOU "The serendipity family of finite elements ", Found. Comp Math, 2011
Arnold, AWanou "Finite element differential forms on cubical meshes", Math Comp., 2013
Arnold, Boffi, Bonizzoni "Finite element differential forms on curvillinear meshes and their approximation properties," Numerische Mathematik, 2014

## The importance of method selection



- Solutions by the standard non-mixed method (left) and by a mixed method (right).
- Only the second choice shows the correct behavior near the reentrant corner.

Poisson problem

- Solutions by two different choices for the finite element solution spaces in a mixed method.
- Only the second choice looks like the true solution: $x(1-x) y(1-y)$.

Examples and images borrowed from:
Arnold, Falk, Winther "Finite Element Exterior Calculus: From Hodge Theory to Numerical Stability," Bulletin of the AMS, 47:2, 2010.

## Stable pairs of elements for mixed methods

Picking elements from the table for a mixed method for the Poisson problem:



$$
\subset H^{1} \times H^{1}
$$

$$
\subset L^{2}
$$


$\subset H($ div $)$

$\subset L^{2}$

Example and images on right from:
Arnold, Falk, Winther "Finite Element Exterior Calculus. .." Bulletin of the AMS, 47:2, 2010.

## Method selection and cochain complexes


$\subset H($ div $)$

$\subset L^{2}$


Provably stable method converges to $\mathrm{u}=x(1-x) y(1-y)$

Stable pairs of elements for mixed Hodge-Laplacian problems are found by choosing consecutive spaces in compatible discretizations of the $L^{2}$ deRham Diagram.

$$
H^{1} \xrightarrow[\text { grad }]{\nabla}>H(\text { curl }) \xrightarrow[\text { curl }]{\nabla \times}>H(\text { div }) \xrightarrow[\text { div }]{\nabla}>L^{2}
$$

vector Poisson
Maxwell's eqn's $\sigma \quad \mu$

Darcy / Poisson
b
$\mathbf{u} \quad p$

Stable pairs are found from consecutive entries in a cochain complex.

## Exact cochain complexes found in the table



- Sequences of elements are used to design stable mixed methods for problems like Darcy flow, Maxwell's equations, vector Poisson, etc.
- The sequences occur either horizontally or diagonally in the table as shown.


## Exact cochain complexes found in the table

On an $n$-simplex in $\mathbb{R}^{n}$ :

$$
\begin{array}{lr}
\mathcal{P}_{r}^{-} \Lambda^{0} \rightarrow \mathcal{P}_{r}^{-} \Lambda^{1} \rightarrow \cdots \rightarrow \mathcal{P}_{r}^{-} \Lambda^{n-1} \rightarrow \mathcal{P}_{r}^{-} \Lambda^{n} & \text { 'trimmed' polynomials } \\
\mathcal{P}_{r} \Lambda^{0} \rightarrow \mathcal{P}_{r-1} \Lambda^{1} \rightarrow \cdots \rightarrow \mathcal{P}_{r-n+1} \Lambda^{n-1} \rightarrow \mathcal{P}_{r-n} \Lambda^{n} & \text { polynomials }
\end{array}
$$

On an $n$-dimensional cube in $\mathbb{R}^{n}$ :

$$
\begin{array}{lr}
\mathcal{Q}_{r}^{-} \Lambda^{0} \rightarrow \mathcal{Q}_{r}^{-} \Lambda^{1} \rightarrow \cdots \rightarrow \mathcal{Q}_{r}^{-} \Lambda^{n-1} \rightarrow \mathcal{Q}_{r}^{-} \Lambda^{n} & \text { tensor product } \\
\mathcal{S}_{r} \Lambda^{0} \rightarrow \mathcal{S}_{r-1} \Lambda^{1} \rightarrow \cdots \rightarrow \mathcal{S}_{r-n+1} \Lambda^{n-1} \rightarrow \mathcal{S}_{r-n} \Lambda^{n} & \text { serendipity }
\end{array}
$$

The 'minus' spaces proceed across rows of the
 PToFE ( $r$ is fixed) while the 'regular' spaces proceed along diagonals ( $r$ decreases)

Mysteriously, the degree of freedom count for mixed methods from the $\mathcal{P}_{r}^{-}$spaces is smaller than those from the $\mathcal{P}_{r}$ spaces, while the opposite is true for the $\mathcal{Q}_{r}^{-}$and $\mathcal{S}_{r}$ spaces.

## Outline

## (1) What are finite element methods?

## (2) Key algebraic properties relating method types

(3) Structure-preservation for method discovery

## Counting boundary and interior DoFs of $\mathcal{P}_{r}^{-} \wedge^{k}$



|  | $\mathcal{P}_{1}^{-} \Lambda^{0}\left(\Delta_{3}\right)$ | $\mathcal{P}_{1}^{-} \Lambda^{1}\left(\Delta_{3}\right)$ | $\mathcal{P}_{1}^{-} \Lambda^{2}\left(\Delta_{3}\right)$ | $\mathcal{P}_{1}^{-} \Lambda^{3}\left(\Delta_{3}\right)$ |
| ---: | :---: | :---: | :---: | :---: |
| faces, edges, and, vertices | 4 | 6 | 4 | 0 |
| interior | 0 | 0 | 0 | 1 |
| total | 4 | 6 | 4 | 1 |



|  | $\mathcal{P}_{2}^{-} \Lambda^{0}\left(\Delta_{3}\right)$ | $\mathcal{P}_{2}^{-} \Lambda^{1}\left(\Delta_{3}\right)$ | $\mathcal{P}_{2}^{-} \Lambda^{2}\left(\Delta_{3}\right)$ | $\mathcal{P}_{2}^{-} \Lambda^{3}\left(\Delta_{3}\right)$ |
| ---: | :---: | :---: | :---: | :---: |
| faces, edges, and, vertices | 10 | 20 | 12 | 0 |
| interior | 0 | 0 | 3 | 4 |
| total | 10 | 20 | 15 | 4 |

## Identifying an alternating sum pattern



|  | $\mathcal{P}_{1}^{-} \Lambda^{0}\left(\Delta_{3}\right)$ | $\mathcal{P}_{1}^{-} \Lambda^{1}\left(\Delta_{3}\right)$ | $\mathcal{P}_{1}^{-} \Lambda^{2}\left(\Delta_{3}\right)$ | $\mathcal{P}_{1}^{-} \Lambda^{3}\left(\Delta_{3}\right)$ | $\pm$ sum |
| ---: | :---: | :---: | :---: | :---: | :---: |
| boundary | 4 | 6 | 4 | 0 | 2 |
| interior | 0 | 0 | 0 | 1 | -1 |
| total | 4 | 6 | 4 | 1 | 1 |


|  | $\mathcal{P}_{2}^{-} \Lambda^{0}\left(\Delta_{3}\right)$ | $\mathcal{P}_{2}^{-} \Lambda^{1}\left(\Delta_{3}\right)$ | $\mathcal{P}_{2}^{-} \Lambda^{2}\left(\Delta_{3}\right)$ | $\mathcal{P}_{2}^{-} \Lambda^{3}\left(\Delta_{3}\right)$ | $\pm$ sum |
| ---: | :---: | :---: | :---: | :---: | :---: |
| boundary | 10 | 20 | 12 | 0 | 2 |
| interior | 0 | 0 | 3 | 4 | -1 |
| total | 10 | 20 | 15 | 4 | 1 |

## Counting DoFs of $Q_{r}^{-} \Lambda^{k}$



|  | $\mathcal{Q}_{1}^{-} \Lambda^{0}\left(\square_{3}\right)$ | $\mathcal{Q}_{1}^{-} \Lambda^{1}\left(\square_{3}\right)$ | $\mathcal{Q}_{1}^{-} \Lambda^{2}\left(\square_{3}\right)$ | $\mathcal{Q}_{1}^{-} \Lambda^{3}\left(\square_{3}\right)$ | $\pm$ sum |
| ---: | :---: | :---: | :---: | :---: | :---: |
| boundary | 8 | 12 | 6 | 0 | 2 |
| interior | 0 | 0 | 0 | 1 | -1 |
| total | 8 | 12 | 6 | 1 | 1 |



|  | $\mathcal{Q}_{2}^{-} \Lambda^{0}\left(\square_{3}\right)$ | $\mathcal{Q}_{2}^{-} \Lambda^{1}\left(\square_{3}\right)$ | $\mathcal{Q}_{2}^{-} \Lambda^{2}\left(\square_{3}\right)$ | $\mathcal{Q}_{2}^{-} \Lambda^{3}\left(\square_{3}\right)$ | $\pm$ sum |
| ---: | :---: | :---: | :---: | :---: | :---: |
| boundary | 26 | 48 | 24 | 0 | 2 |
| interior | 1 | 6 | 12 | 8 | -1 |
| total | 27 | 54 | 36 | 8 | 1 |

## Predicting DoFs of $\mathcal{S}_{r}^{-} \Lambda^{k}$

How big would a "minimal dimension" cochain complex on cubes be?
Expect to recover $\mathcal{Q}_{1}^{-} \Lambda^{k}$ in lowest order case:

|  | $\mathcal{S}_{1}^{-} \Lambda^{0}\left(\square_{3}\right)$ | $\mathcal{S}_{1}^{-} \Lambda^{1}\left(\square_{3}\right)$ | $\mathcal{S}_{1}^{-} \Lambda^{2}\left(\square_{3}\right)$ | $\mathcal{S}_{1}^{-} \Lambda^{3}\left(\square_{3}\right)$ | $\pm$ sum |
| ---: | :---: | :---: | :---: | :---: | :---: |
| boundary | 8 | 12 | 6 | 0 | 2 |
| interior | 0 | 0 | 0 | 1 | -1 |
| total | 8 | 12 | 6 | 1 | 1 |

For $r>1$, we must have a constant multiple of DoFs per edge or face, and we have expected dimensions (by other reasoning) for $\mathcal{S}_{2}^{-} \Lambda^{0}$ and $\mathcal{S}_{2}^{-} \Lambda^{3}$ :

|  | $\mathcal{S}_{2}^{-} \Lambda^{0}\left(\square_{3}\right)$ | $\mathcal{S}_{2}^{-} \Lambda^{1}\left(\square_{3}\right)$ | $\mathcal{S}_{2}^{-} \Lambda^{2}\left(\square_{3}\right)$ | $\mathcal{S}_{2}^{-} \Lambda^{3}\left(\square_{3}\right)$ | $\pm$ sum |
| ---: | :---: | :---: | :---: | :---: | :---: |
| boundary | 20 | $12 e_{1}+6 f_{1}$ | $6 f_{2}$ | 0 | 2 |
| interior | 0 | $i_{1}$ | $i_{2}$ | 4 | -1 |
| total | 20 | $12 e_{1}+6 f_{1}+i_{1}$ | $6 f_{2}+i_{2}$ | 4 | 1 |

Also expect $e_{1}=2$ since this would augment the DoFs per edge by 1 from $r=1$ case.

## Actual DoFs of $\mathcal{S}_{r}^{-} \wedge^{k}(r=1,2)$



|  | $\mathcal{S}_{1}^{-} \Lambda^{0}\left(\square_{3}\right)$ | $\mathcal{S}_{1}^{-} \Lambda^{1}\left(\square_{3}\right)$ | $\mathcal{S}_{1}^{-} \Lambda^{2}\left(\square_{3}\right)$ | $\mathcal{S}_{1}^{-} \Lambda^{3}\left(\square_{3}\right)$ | $\pm$ sum |
| ---: | :---: | :---: | :---: | :---: | :---: |
| boundary | 8 | 12 | 6 | 0 | 2 |
| interior | 0 | 0 | 0 | 1 | -1 |
| total | 8 | 12 | 6 | 1 | 1 |



|  | $\mathcal{S}_{2}^{-} \Lambda^{0}\left(\square_{3}\right)$ | $\mathcal{S}_{2}^{-} \Lambda^{1}\left(\square_{3}\right)$ | $\mathcal{S}_{2}^{-} \Lambda^{2}\left(\square_{3}\right)$ | $\mathcal{S}_{2}^{-} \Lambda^{3}\left(\square_{3}\right)$ | $\pm$ sum |
| ---: | :---: | :---: | :---: | :---: | :---: |
| boundary | 20 | 36 | 18 | 0 | 2 |
| interior | 0 | 0 | 3 | 4 | -1 |
| total | 20 | 36 | 21 | 4 | 1 |

## Actual DoFs of $\mathcal{S}_{r}^{-} \wedge^{k}(r=2,3)$



|  | $\mathcal{S}_{2}^{-} \Lambda^{0}\left(\square_{3}\right)$ | $\mathcal{S}_{2}^{-} \Lambda^{1}\left(\square_{3}\right)$ | $\mathcal{S}_{2}^{-} \Lambda^{2}\left(\square_{3}\right)$ | $\mathcal{S}_{2}^{-} \Lambda^{3}\left(\square_{3}\right)$ | $\pm$ sum |
| ---: | :---: | :---: | :---: | :---: | :---: |
| boundary | 20 | 36 | 18 | 0 | 2 |
| interior | 0 | 0 | 3 | 4 | -1 |
| total | 20 | 36 | 21 | 4 | 1 |


| +0. |
| :---: |
|  |  |


|  | $\mathcal{S}_{3}^{-} \Lambda^{0}\left(\square_{3}\right)$ | $\mathcal{S}_{3}^{-} \Lambda^{1}\left(\square_{3}\right)$ | $\mathcal{S}_{3}^{-} \Lambda^{2}\left(\square_{3}\right)$ | $\mathcal{S}_{3}^{-} \Lambda^{3}\left(\square_{3}\right)$ | $\pm$ sum |
| ---: | :---: | :---: | :---: | :---: | :---: |
| boundary | 32 | 66 | 36 | 0 | 2 |
| interior | 0 | 0 | 9 | 10 | -1 |
| total | 32 | 66 | 45 | 10 | 1 |

## The 5th column: Trimmed serendipity spaces



A new column for the PToFE: the trimmed serendipity elements.
$\mathcal{S}_{r}^{-} \Lambda^{k}\left(\square_{n}\right)$ denotes approximation order $r$, subset of $k$-form space $\Lambda^{k}(\Omega)$, use on meshes of $n$-dim'l cubes.

Defined for any $n \geq 1,0 \leq k \leq n, r \geq 1$
Identical or analogous properties to all the other colummns in the table.

The advantage of the $\mathcal{S}_{r}^{-} \Lambda^{k}$ spaces is that they have fewer degrees of freedom for mixed methods than their tensor product and serendipity counterparts.

## Dimension count and comparison

Formula for counting degrees of freedom of $\mathcal{S}_{r}^{-} \Lambda^{k}\left(\square_{n}\right)$ :

## Key properties of the trimmed serendipity spaces

$$
\begin{array}{llr}
\mathcal{Q}_{r}^{-} \Lambda^{0} \rightarrow \mathcal{Q}_{r}^{-} \Lambda^{1} \rightarrow \cdots \rightarrow \mathcal{Q}_{r}^{-} \Lambda^{n-1} & \rightarrow \mathcal{Q}_{r}^{-} \Lambda^{n} & \text { tensor product } \\
\mathcal{S}_{r} \Lambda^{0} \rightarrow \mathcal{S}_{r-1} \Lambda^{1} \rightarrow \cdots \rightarrow \mathcal{S}_{r-n+1} \Lambda^{n-1} \rightarrow \mathcal{S}_{r-n} \Lambda^{n} & \text { serendipity } \\
\mathcal{S}_{r}^{-} \Lambda^{0} \rightarrow \mathcal{S}_{r}^{-} \Lambda^{1} \rightarrow \cdots \rightarrow \mathcal{S}_{r}^{-} \Lambda^{n-1} & \rightarrow \mathcal{S}_{r}^{-} \Lambda^{n} & \text { trimmed serendipity }
\end{array}
$$

Subcomplex: $\quad d \mathcal{S}_{r}^{-} \Lambda^{k} \subset \mathcal{S}_{r}^{-} \Lambda^{k+1}$
Exactness: The above sequence is exact.
i.e. the image of incoming map = kernel of outgoing map

Inclusion: $\quad \mathcal{S}_{r} \Lambda^{k} \subset \mathcal{S}_{r+1}^{-} \Lambda^{k} \subset \mathcal{S}_{r+1} \Lambda^{k}$
Trace: $\quad \operatorname{tr}_{f} \mathcal{S}_{r}^{-} \Lambda^{k}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}_{r}^{-} \Lambda^{k}(f), \quad$ for any $(n-1)$-hyperplane $f$ in $\mathbb{R}^{n}$
Special cases: $\quad \mathcal{S}_{r}^{-} \Lambda^{0}=\mathcal{S}_{r} \Lambda^{0}$

$$
\begin{aligned}
& \mathcal{S}_{r}^{-} \Lambda^{n}=\mathcal{S}_{r-1} \Lambda^{n} \\
& \mathcal{S}_{r}^{-} \Lambda^{k}+d \mathcal{S}_{r+1} \Lambda^{k-1}=\mathcal{S}_{r} \Lambda^{k} .
\end{aligned}
$$

Replace ' $\mathcal{S}$ ' by $‘ \mathcal{P}$ ' $\rightsquigarrow$ key properties about the first two columns for $\mathcal{P}_{r}^{-} \Lambda^{\kappa}$ and $\mathcal{P}_{r} \Lambda^{\kappa}$ !

## Mixed Method dimension comparison 1

Mixed method for Darcy problem:

$$
\begin{aligned}
\mathbf{u}+K \nabla p & =0 \\
\operatorname{div} \mathbf{u}-f & =0
\end{aligned}
$$

We compare degree of freedom counts among the three families for use on meshes of affinely-mapped squares or cubes, when a conforming method with (at least) order $r$ decay in the approximation of $p, \mathbf{u}$, and div $\mathbf{u}$ is desired.

Total \# of degrees of freedom on a square $(n=2)$ :

| $r$ | $\left\|\mathcal{Q}_{r}^{-} \Lambda^{1}\right\|+\left\|\mathcal{Q}_{r}^{-} \Lambda^{2}\right\|$ | $\left\|\mathcal{S}_{r} \Lambda^{1}\right\|+\left\|\mathcal{S}_{r-1} \Lambda^{2}\right\|$ | $\left\|\mathcal{S}_{r}^{-} \Lambda^{1}\right\|+\left\|\mathcal{S}_{r}^{-} \Lambda^{2}\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | $4+1=5$ | $8+1=9$ | $4+1=5$ |
| 2 | $12+4=16$ | $14+3=17$ | $10+3=13$ |
| 3 | $24+9=33$ | $22+6=28$ | $17+6=23$ |

Total \# of degrees of freedom on a cube $(n=3)$ :

| $r$ | $\left\|\mathcal{Q}_{r}^{-} \Lambda^{2}\right\|+\left\|\mathcal{Q}_{r}^{-} \Lambda^{3}\right\|$ | $\left\|\mathcal{S}_{r} \Lambda^{2}\right\|+\left\|\mathcal{S}_{r-1} \Lambda^{3}\right\|$ | $\left\|\mathcal{S}_{r}^{-} \Lambda^{2}\right\|+\left\|\mathcal{S}_{r}^{-} \Lambda^{3}\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | $6+1=7$ | $18+1=19$ | $6+1=7$ |
| 2 | $36+8=44$ | $39+4=43$ | $21+4=25$ |
| 3 | $108+27=135$ | $72+10=82$ | $45+10=55$ |

## Mixed Method dimension comparison 2

Mixed method for Darcy problem:

$$
\begin{aligned}
\mathbf{u}+K \nabla p & =0 \\
\operatorname{div} \mathbf{u}-f & =0
\end{aligned}
$$

The number of interior degrees of freedom is reduced from tensor product, to serendipity, to trimmed serendipity:
\# of interior degrees of freedom on a square $(n=2)$ :

| $r$ | $\left\|\mathcal{Q}_{r}^{-} \Lambda_{0}^{1}\right\|+\left\|\mathcal{Q}_{r}^{-} \Lambda_{0}^{2}\right\|$ | $\left\|\mathcal{S}_{r} \Lambda_{0}^{1}\right\|+\left\|\mathcal{S}_{r-1} \Lambda_{0}^{2}\right\|$ | $\left\|\mathcal{S}_{r}^{-} \Lambda_{0}^{1}\right\|+\left\|\mathcal{S}_{r}^{-} \Lambda_{0}^{2}\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | $0+1=1$ | $0+1=1$ | $0+1=1$ |
| 2 | $4+4=8$ | $2+3=5$ | $2+3=5$ |
| 3 | $12+9=21$ | $6+6=12$ | $5+6=11$ |

\# of interior degrees of freedom on a cube $(n=3)$ :

| $r$ | $\left\|\mathcal{Q}_{r}^{-} \Lambda_{0}^{2}\right\|+\left\|\mathcal{Q}_{r}^{-} \Lambda_{0}^{3}\right\|$ | $\left\|\mathcal{S}_{r} \Lambda_{0}^{2}\right\|+\left\|\mathcal{S}_{r-1} \Lambda_{0}^{3}\right\|$ | $\left\|\mathcal{S}_{r}^{-} \Lambda_{0}^{2}\right\|+\left\|\mathcal{S}_{r}^{-} \Lambda_{0}^{3}\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | $0+1=1$ | $0+1=1$ | $0+1=1$ |
| 2 | $12+8=20$ | $3+4=7$ | $3+4=7$ |
| 3 | $54+27=81$ | $12+10=22$ | $9+10=19$ |

## Mixed Method dimension comparison 3

Mixed method for Darcy problem:

$$
\begin{aligned}
\mathbf{u}+K \nabla p & =0 \\
\operatorname{div} \mathbf{u}-f & =0
\end{aligned}
$$

Assuming interior degrees of freedom could be dealt with efficiently (e.g. by static condensation), trimmed serendipity elements still have the fewest DoFs:
\# of interface (edge) degrees of freedom on a square $(n=2)$ :

| $r$ | $\left\|\mathcal{Q}_{r}^{-} \Lambda^{1}\left(\partial \square_{2}\right)\right\|$ | $\left\|\mathcal{S}_{r} \Lambda^{1}\left(\partial \square_{2}\right)\right\|$ | $\left\|\mathcal{S}_{r}^{-} \Lambda^{1}\left(\partial \square_{2}\right)\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | 4 | 8 | 4 |
| 2 | 8 | 12 | 8 |
| 3 | 12 | 16 | 12 |

\# of interface (edge+face) degrees of freedom on a cube $(n=3)$ :

| $r$ | $\left\|\mathcal{Q}_{r}^{-} \Lambda^{2}\left(\partial \square_{3}\right)\right\|$ | $\left\|\mathcal{S}_{r} \Lambda^{2}\left(\partial \square_{3}\right)\right\|$ | $\left\|\mathcal{S}_{r}^{-} \Lambda^{2}\left(\partial \square_{3}\right)\right\|$ |
| :---: | :---: | :---: | :---: |
| 1 | 6 | 18 | 6 |
| 2 | 24 | 36 | 18 |
| 3 | 54 | 60 | 36 |

## Open source finite element software



FEniCS primarily supports simplicial elements
¢ deal.II
deal.ii primarily supports quad/hex elements

Alnes et al. "The FEniCS Project Version 1.5" Archive of Numerical Software 2015 Bangerth et Al. "The deal.ii Library, Version 8.4," Journal of Num. Math., 2016

Neither package supports (trimmed) serendipity elements yet. . .
. . . but that is likely to change in the near future!

## Acknowledgments

## Thanks for the invitation to speak!

Related Publications
Christiansen, G. "Constructions of some minimal finite element systems." ESAIM: M2AN, 50:3, pp. 833-850, 2016.
G., Kloefkorn "Trimmed Serendipity Finite Element Differential Forms." Mathematics of Computation, to appear. See arXiv:1607.00571
G., Kloefkorn, Sanders "Computational serendipity and tensor product finite element differential forms." Submitted. See arXiv:1806.00031

Research Funding
Supported in part by the National Science Foundation grant DMS-1522289.
Slides and Pre-prints
http://math.arizona.edu/~agillette/

