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@ What are finite element methods?
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What are (efficient) finite element methods?

The finite element method is a way to numerically approximate the solution to PDEs.

ﬁ

CHARACTERIZE DISCRETIZE SOLVE

Real analysis Geometry & Topology Linear algebra

PDEs Combinatorics Numerical analysis

Order of accuracy of computed solution — depends on local “basis” functions on each element.

Size of the linear system — depends on the number of mesh elements and
the number of degrees of freedom associated to each element.

For computational efficiency: maximize order of accuracy while minimizing degrees of freedom.
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The Finite Element Method: 1D

Ex: The 1D Laplace equation: find u(x) € U s.t.

—u"(x) = f(x) on]a,b]
u(a) =0,
u(b)=0

Make the problem easier by making it (seemingly) harder . . .
Weak form: find u(x) € U (dim U = o) s.t.

b b
/ u'(x)V'(x) dx = / f(x)v(x)dx, VYveV (dmV =)

... but we can now search a finite-dimensional space. . .
Discrete form: find ux(x) € Uy (dim Uy < o) s.t.
a

b b
/ Un(X)vp(x) dx = / f(x)vn(x) dx, Yvh eV, (dimV, < o)

Typical approach: U, = Vi, = (some space of piecewise polynomials) J
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The Finite Element Method: 1D

Suppose up(x) can be written as linear combination of V}, elements:

un(x) = > uvi(x)

vieVy

The discrete form becomes: find coefficients u; € R such that
b b
Z/ uv/ (x)v/ (x) dx = / f(x)vi(x) dx, Vv € basisfor Vi (dim Vi, < o0)
i a a

Written as a linear system:
[K]; [ul;=[f];, Vv € basisfor Vy

With some functional analysis we can prove: 3 C > 0, independent of h, s.t.

U — Unl| 1 () < Chp|U|H2(Q) ) Vu € H(Q)
—_—— —_—— ——
error between cnts bound in terms of holds for any u with
and discrete solution 2nd order osc. of u bounded 2nd derivs.

where h = maximum width of elements use in discretization
and p depends on choice of space V,
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Choosing a finite element type: 1D

Set V), := piecewise polynomials, max degree p on each segment,
constrained to meet with C° continuity at vertices.

{15X7X27X3} S {¢17¢27w3,w4} A .l_.'Z_.S_.l
change associate to
of basis geometry
monomials — basis functions — domain points
Cubic |V (x =177
2
Basis ve| | (=1 (x 13 — (scale) — N
on [-1.1] 3 (x—=1)(x+1) S~
’ P4 (X + 1)3 | I

Kl
— Observe ¢1, ¢4 interpolate values at endpoints while ¢», ¢3 are associated
to “interior” approximation.

— Straightforward in 1D to generalize to arbitrary p > 1 or continuity C', C?, etc.
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Cubic order tensor product basis functions: 2D

4 24 34 44

Xr'ys } 13. 23. 33. 43]
{ 0<rs<3 - { Pii(x, ¥) } PN .

>
12 2

e

_,2_/ 1<i,j<4 32 42
Q3([Ov 1] ) DT )
monomials — basis functions +— domain points

Approximation: For 0 < r, s < 3, the monomial x"y*® is a linear combination of the ;.

0.04%

Geometry:

U = Ul(0,0)%11 + OxUl(0,0)%21 + Oy Ul(0,0)%12 + OxOyU|(0,0)%22 + - - - , Yu € Q5([0,1]%)
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Which monomials do we really need for cubic order?

tensor product cubics (dim=16)

{1,y %2, y2,xy, %3, y3 X2y, xy®, X3y, xy®, x2y2, x3y?, x2y®, x®y®}

total degree cubics (dim=10)

superlinear cubics (dim=12)

total degree(x’y%) =r+s
superlinear degree(x"y®) = r + s — {# of linearly appearing variables}

total degree  superlinear degree

xy? 3 2
x3y 4 3
xy® 4 3
x2y2 4 4
x3y2 5 5

— For cubic order accuracy, we only need all total degree cubics.

— To ensure a “smooth enough” solution, we expand to the set of all superlinear degree cubics.

— The notion of superlinear degree and its generalization for serendipity elements comes from
ARNOLD, AWANOU Found. Comp Math 2011, Math. Comp. 2013.
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Cubic serendipity basis functions in 2D and 3D

14 _)lA :ilA 1]
{ x’ys } 9 ( ) 13 i3
sldeg < 3 em\X, Y \
—_— { (limited indices) } o L
83([0a 1] ) 1w 20 31 4l
monomials > basis functions +— domain points
Approximation: For sldeg(x"y®) < 3, x"y®is a linear combination of the Y.
A
b a(x,y) = alo.ovh
. i + 0xal (0,021
Geometry: + yal0.0yde
H . Xr.yszt 19£mn N : o 14] 20 314 ‘:x
in 3D { sideg<3 [ T (limited indices) = .

SR TEME T TT)
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e Key algebraic properties relating method types

Andrew Gillette - U. Arizona Struc. Pres. Serendipity Elements CMS Winter Mtg - Dec 2018 11/34



The ‘Periodic Table of the Finite Elements’

ARNOLD, LOGG, “Periodic table of the finite elements,” SIAM News, 2014.

~ DA ~ IR = vz
Al n | & |
RT; h Q RTey
4 .

[

Classification of many common conforming finite element types.

n — Domains in R? (top half) and in R® (bottom half)
r — Order 1,2, 3 of error decay (going down columns)
k — Conformity type k =0, ..., n(going across a row)

Geometry types: Simplices (left half) and cubes (right half).
CMS Winter Mtg - Dec 2018 12/34
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Classification of conforming methods

Conforming finite element method types can be broadly classified by three integers:

n — the spatial dimension of the domain
r — the order of error decay

k — the differential form order of the solution space

Ex: Q; A%(0s) is an element for

n=3 — domainsinR?

=~ 6 r=1 — linear order of error decay
i k=2 — conformity in A*(R%) ~ H(div)
O, A*(0s) is part of the Q™ ‘column’ of elements,
Nei el is defined on geometry s (i.e. a cube),
i has a 6 dimensional space of test functions,

and has an associated set of 6 degrees of freedom
that are unisolvent for the test function space.
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An abbreviated reading list (50 years of theory!)

RAVIART, THOMAS, “A mixed finite element method for 2nd order elliptic problems” Lecture Notes
in Mathematics, 1977 « 3172 citations, including 150 from 2017!

NEDELEC, “Mixed finite elements in R3,” Numerische Mathematik, 1980

BREZzzI, DOUGLAS JR., MARINI, “Two families of mixed finite elements for second order elliptic
problems,” Numerische Mathematik, 1985

NEDELEC, “A new family of mixed finite elements in R3,” Numerische Mathematik, 1986

ARNOLD, FALK, WINTHER “Finite element exterior calculus, homological techniques, and
applications,” Acta Numerica, 2006

CHRISTIANSEN, “Stability of Hodge decompositions in finite element spaces of differential forms
in arbitrary dimension,” Numerische Mathematik, 2007

ARNOLD, FALK, WINTHER “Finite element exterior calculus: from Hodge theory to numerical
stability,” Bulletin of the AMS, 2010

ARNOLD, AWANOU “The serendipity family of finite elements ”, Found. Comp Math, 2011
ARNOLD, AWANOU “Finite element differential forms on cubical meshes”, Math Comp., 2013

ARNOLD, BOFFI, BONIZzONI “Finite element differential forms on curvillinear meshes and their
approximation properties,” Numerische Mathematik, 2014
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The importance of method selection

Vector Poisson problem
@ Solutions by the standard non-mixed
method (left) and by a mixed method
(right).
@ Only the second choice shows the
correct behavior near the reentrant
corner.

ooxzs Poisson problem

@ Solutions by two different choices for
the finite element solution spaces in a

mixed method.
4 ] . .
T e T @ Only the second choice looks like the
VNN .
Vit true solution: x(1 — x)y(1 — y).

Examples and images borrowed from:

ARNOLD, FALK, WINTHER “Finite Element Exterior Calculus: From Hodge Theory to Numerical
Stability,” Bulletin of the AMS, 47:2, 2010.
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Stable pairs of elements for mixed methods

Picking elements from the table for a mixed method for the Poisson problem:

025

A NA B m

Unstable method

P, PN P, )
C H' x H clL?
y, ' sz |
4 V474747474
4 A Provably stable method
o AYAYAY:
RTEM  AA) ap, i) E 2 converges to
retes 1agan % CATAVAVATAYA = — _
e T e R u=x(1-x)y(1-y)
,
C H(div) clL?

Example and images on right from:

ARNOLD, FALK, WINTHER “Finite Element Exterior Calculus. ..” Bulletin of the AMS, 47:2, 2010.
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Method selection and cochain complexes
V. '
VA A

Provably stable method

locarz

converges to

RT{/ PLA(4) dP, PiA(4) ey,
3 PAB) 3 1 P =1 \VAYAYA"d V122 _
' - u=x(1-x)y(1-y)
L
; 2
C H(div) cL

Stable pairs of elements for mixed Hodge-Laplacian problems are found by choosing
consecutive spaces in compatible discretizations of the 2 deRham Diagram.

H' —Y > H(curl) ——> H(div) ———> [?
grad curl div
vector Poisson o L
Maxwell’s egn’s h b
Darcy / Poisson u p
Stable pairs are found from consecutive entries in a cochain complex. )
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Exact cochain complexes found in the table

@ Sequences of elements are used to design stable mixed methods for problems
like Darcy flow, Maxwell’s equations, vector Poisson, etc.

@ The sequences occur either horizontally or diagonally in the table as shown.
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Exact cochain complexes found in the table

On an n-simplex in R":
PN PN oo 5PN S PIA" “trimmed’ polynomials
PA =P N = oo 5 PN = P A polynomials
On an n-dimensional cube in R":
0N O AN = 0 S OFATTT S O A tensor product

SN =58 N= oo 58 AT S A" serendipity

The ‘minus’ spaces proceed across rows of the
s PToFE (r is fixed) while the ‘regular’ spaces
N ﬁ proceed along diagonals (r decreases)

mixed methods from the P, spaces is smaller
than those from the P, spaces, while the
opposite is true for the Q, and S; spaces.

. 7 E Mysteriously, the degree of freedom count for
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e Structure-preservation for method discovery
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Counting boundary and interior DoFs of P, A

faces, edges, and, vertices 4 6 4 0
interior 0 0 0 1
total 4 6 4 1

Py, N(Asz) | Py N'(As)
faces, edges, and, vertices 10 20
interior 0 0
total 10 20
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Identifying an alternating sum pattern

+ sum
boundary 2
interior -1
total 1

Py N(Az) | Py A (As) [ Py A2(As) | Py A%(As) || +sum
boundary 10 20 12 0 2
interior 0 0 3 4 -1
total 10 20 15 4 1
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e ;7 i -
o g
O N (Ts) | QA (Ts) | Q7 A%(Os) | O A3(Ts) || + sum
boundary 8 12 6 0 2
interior 0 0 0 1 -1
total 8 12 6 1 1
Oéz’ -
9, N°(Os) + sum
boundary 26 2
interior 1 -1
total 27 1
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Predicting DoFs of S; Ak

How big would a “minimal dimension” cochain complex on cubes be?

Expect to recover Q; A¥ in lowest order case:

S, N (0s) | S;AT(Ds) | S;A%(0s) | S;A3(Ts) || £ sum
boundary 8 12 6 0 2
interior 0 0 0 1 -1
total 8 12 6 1 1

For r > 1, we must have a constant multiple of DoFs per edge or face,
and we have expected dimensions (by other reasoning) for S{/\O and S;A3:

Sy A°(0s) S, N'(Ds) S; N(Os) | S, A(0s) || +sum
boundary 20 12e1 + 6f 6f 0 2
interior 0 i i 4 -1
total 20 12ey +6f; + s 6h + b 4 1

Also expect e; = 2 since this would augment the DoFs per edge by 1 from r = 1 case.
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12

Actual DoFs of STAX (r =1,2)

S, N (s) | S;AT(Ds) | S;A%(0s) | S;A3(Ts) || £ sum
boundary 8 12 6 0 2
interior 0 0 0 1 -1
total 8 12 6 1 1

20 - 36 21 4

S; N(0s) | S; AT(Os) | S, A%(Ds) | S, A3(Os) || + sum
boundary 20 36 18 0 2
interior 0 0 3 4 -1
total 20 36 21 4 1
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Actual DoFs of S-AX (r = 2,3)

20 . 36 21 . 4

S, N(0s) | S, A"(Ds) | S, A%(0s) | S; A3(0s) || £ sum
boundary 20 36 18 0 2
interior 0 0 3 4 -1
total 20 36 21 4 1

X .. 32 . 66 . . 45 10

S; N°(0s) | S;AT(Ds) | S; A%(Os) | Sy A3(0s) || £ sum
boundary 32 66 36 0 2
interior 0 0 9 10 -1
total 32 66 45 10 1
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The 5th column: Trimmed serendipity spaces

A new column for the PToFE:
the trimmed serendipity elements.

S; A¥(O,) | denotes
approximation order r,
subset of k-form space A*(Q),
use on meshes of n-dim’l cubes.

Defined foranyn>1,0< k<n,r>1

Identical or analogous properties to all the
other colummns in the table.

The advantage of the S;” A¥ spaces is that
they have fewer degrees of freedom for mixed
methods than their tensor product and
serendipity counterparts.
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Dimension count and comparison

Formula for counting degrees of freedom of S AK(Cp):
_ —d+2k -1 —d+ k-1 —d+2k —d+ k-1
2" d@)((rr—dikq)(r gk )r( k+ [P >)

k| r=1 2 3 4 5 6 7

min{n,|r/2]+k}

d=k

n=2 0 4 8 12 17 23 30 38
4 10 17 26 37 50 65
10 15 21 28

N —
—
w
[e)]

n=3 0 8 20 32 50 74 105 144
1 12 36 66 111 173 255 360
2 6 21 45 82 135 207 301
3 1 4 10 20 35 56 84
n=4 16 48 80 136 216 328 480

32 112 216 392 656 1036 1563
24 96 216 422 746 1227 1910
8 36 94 200 375 644 1036
1 5 15 35 70 126 210

A WN—=2O
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Key properties of the trimmed serendipity spaces

O O A = s SO AT S oA tensor product
SN =S N = o S N 5 SN serendipity
SN SN = s SN S SN trimmed serendipity

Subcomplex: dS;7AF ¢ §7 A

Exactness: The above sequence is exact.
i.e. the image of incoming map = kernel of outgoing map

Inclusion:  S,AF C S A" C SN
Trace: tr;S; A(R") C S, A%(f), forany (n— 1)-hyperplane f in R”
Special cases: S, A =S, A°

SN =8, 1A\"
SN+ dS N = SAK

Replace ‘S’ by ‘P’ ~ key properties about the first two columns for 2, Ak and P, A J
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Mixed Method dimension comparison 1

u+Kvp = 0

Mixed method for Darcy problem: dvu—f = 0

We compare degree of freedom counts among the three families for use on meshes of
affinely-mapped squares or cubes, when a conforming method with (at least) order r
decay in the approximation of p, u, and div u is desired.

Total # of degrees of freedom on a square (n = 2):

ro| IQE N 1O N | IS+ [S—1 AP | IS AT+ [S7 A2
441= 5 8+1= 9 441= 5

2 12+4 = 16 14+3 = 17 10+3= 13

3 24+9 = 33 22+6 = 28 17+6 = 23

Total # of degrees of freedom on a cube (n = 3):

r |Q7 N2+ Q7 N3] | [SIN?| + [S,aN°| | |87 A% + 1S A°)
6+1= 7 1841 = 19 6+1= 7

2 36+8 = 44 39+4 = 43 21+4= 25

3 | 108+27= 135 72+10= 82 45410 = 55
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Mixed Method dimension comparison 2

u+Kvp = 0

Mixed method for Darcy problem: dvu—f = 0

The number of interior degrees of freedom is reduced from tensor product, to
serendipity, to trimmed serendipity:

# of interior degrees of freedom on a square (n = 2):

ro| o 1Qr Nl IO NG| | IS ol + IS—1AS| | IS Ag| + |S A
0+1= 1 0+1= 1 0+1= 1

2 444= 8 2+3= 5 2+3= 5

3 1249 = 21 6+6= 12 5+6= 11

# of interior degrees of freedom on a cube (n = 3):

r 1Qr NSI+ 197 N3] | ISHAS| + S-S | 1S AS] + 1S A
0+1 = 1 0+1 = 1 0+1 = 1

2 12+8 = 20 3+4 = 7 3+4 = 7

3 54+27 = 81 12+10= 22 9+10= 19
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Mixed Method dimension comparison 3

u+Kvp = 0

Mixed method for Darcy problem: dvu—f = 0

Assuming interior degrees of freedom could be dealt with efficiently (e.g. by static
condensation), trimmed serendipity elements still have the fewest DoFs:

# of interface (edge) degrees of freedom on a square (n = 2):

r

Q7 N (0)| | [S:AT(90R)] | ST AT (00
1 4 8 4
2 8 12 8
3 12 16 12

# of interface (edge+face) degrees of freedom on a cube (n = 3):

ro| QA% | ISR (00)] | |7 AR (90s))
1 6 18 6
2 24 36 18
3 54 60 36
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Open source finite element software

E?B'Sé’cc $2 deal.Il

FENICS primarily supports deal.ii primarily supports
simplicial elements quad/hex elements

ALNAS ET AL. “The FEniCS Project Version 1.5” Archive of Numerical Software 2015
BANGERTH ET AL. “The deal.ii Library, Version 8.4,” Journal of Num. Math., 2016

Neither package supports (trimmed) serendipity elements yet. . .
... but that is likely to change in the near future!
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