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Motivation

Biological modeling requires robust computational methods to solve PDEs

Electromagnetics Electrodiffusion Elasticity

These methods must accommodate

multiple variables

large meshes

multi-scale phenomena

What does robust mean in such contexts?
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Problem Statement

A robust computational method for solving PDEs should exhibit

Model Conformity: Computed solutions are found in a subspace of the solution
space for the continuous problem

Criterion: Discrete solution spaces replicate the the deRham sequence.

Discretization Stability: The true error between the discrete and continuous
solutions is bounded by a multiple of the best approximation error

Criterion: The discrete inf-sup condition is satisfied.

Bounded Roundoff Error: Accumulated numerical errors due to machine
precision do not compromise the computed solution

Criterion: Matrices inverted by the linear solver are well-conditioned.

Problem Statement
Use the theory of Discrete Exterior Calculus to evaluate the robustness of existing
computational methods for PDEs arising in biology and create novel methods with
improved robustness. This talk’s focus: model conformity.
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Selected Prior Work

Importance of differential geometry in computational methods for electromagnetics:

BOSSAVIT Computational Electromagnetism Academic Press Inc. 1998

Primer on DEC theory and program of work:

DESBRUN, HIRANI, LEOK, MARSDEN Discrete Exterior Calculus arXiv:math/0508341v2
[math.DG], 2005

Generalization of deRham diagram criteria for model conformity:

ARNOLD, FALK, WINTHER Finite element exterior calculus, homological techniques, and
applications Acta Numerica, 15:1-155, 2006.

Applications of DEC to electromagnetics, Darcy flow, and elasticity problems:

HE, TEIXEIRA Geometric finite element discretization of Maxwell equations in primal and dual

spaces Physics Letters A, 349(1-4):1–14, 2006

HIRANI, NAKSHATRALA, CHAUDHRY Numerical method for Darcy Flow derived using Discrete

Exterior Calculus arXiv:0810.3434v1 [math.NA], 2008

YAVARI On geometric discretization of elasticity Journal of Mathematical Physics,

49(2):022901-1–36, 2008
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(Smooth) Exterior Calculus

Differential k -forms model k -dimensional physical phenomena.

E
B q

u

The exterior derivative d generalizes common differential operators.

Λ0(Ω)
d0−−−−−→

grad
Λ1(Ω)

d1−−−−−→
curl

Λ2(Ω)
d2−−−−−→
div

Λ3(Ω)

The Hodge Star transfers information between complementary dimensions.

Λ0(Ω)←− ∗ −→ Λ3(Ω)

Λ1(Ω)←− ∗ −→ Λ2(Ω)

Fundamental “Theorem” of Discrete Exterior Calculus
Model-conforming computational methods must recreate the essential properties of
(continuous) exterior calculus on the discrete level.
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Discrete Exterior Calculus

Discrete differential k -forms are k -cochains, i.e. linear functions on k -simplices.

8.4

10.3

3.8

7.7

5.2
0.6

−2.4
3.7

2.14.3

−1.1

The discrete exterior derivative is D = (∂)T , the transpose of the boundary
operator.

C0 D0−−−−−→
(grad)

C1 D1−−−−−→
(curl)

C2 D2−−−−−→
(div)

C3

The discrete Hodge Star M transfers information between complementary
dimensions on dual meshes.

C0
M0 // C2

C1
M1 // C1

C2
M2 // C0

Computational Visualization Center , I C E S (Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette )The University of Texas at Austin Apr 2010 9 / 34
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The Importance of Cohomology

Λ0
d0

grad
// Λ1

d1

curl
// Λ2

d2

div
// Λ3

C0
D0 // C1

D1 // C2
D2 // C3

Cohomology classes represent the different types of solutions permitted by the
topology of the space.

The solution spaces for a discrete method should include representatives from all
cohomology classes. Hence model conformity requires that the top and bottom
sequences have the same cohomology group ranks.

Example: The torus has two non-zero cohomology equivalence classes in dim. 1

dim(Cohomology at Λ1) := dim (ker d1/im d0)

‖ (if conforming)

dim(Cohomology at C1) := dim (ker D1/im D0)

Computational Visualization Center , I C E S (Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette )The University of Texas at Austin Apr 2010 10 / 34
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Two Notions of “Interpolant”

In classical finite element theory, a local interpolant operator I associated to a finite
element {K ,P,Σ} is a map from a normed vector space V (K ) ⊃ P to P.

Ex: The local interpolant operator for the linear Lagrange element on the tetrahedron
K from V (K ) = (C0)3 is

I : (C0)3 → H1(K ), ν 7→
4X

i=1

ν(vi )λi

where λi is the barycentric function on the tetrahedron for vertex vi .

For DEC, we define an interpolation map Ik as a map from k -cochains Ck to
differential k -forms Λk .

Ex: The interpolant map for 0-cochains on a tetrahedron is

I0 : C0 → H1(K ), ω 7→
4X

i=1

ω(vi )λi

Note that ν : K → R while ω : {vi} → R.
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Mixed finite element methods

Mixed finite element methods seek solutions in subspaces of the L2 deRham
sequence.

H1
d0

grad
//

P0

��

H(curl)
d1

curl
//

P1

��

H(div)
d2

div
//

P2

��

L2

P3

��
C0

D0 //

I0

OO

C1
D1 //

I1

OO

C2
D2 //

I2

OO

C3

I3

OO

where I is an interpolation map and P is a projection map (the deRham map).

Theorem [Arnold, Falk, Winther]
If Ik is Whitney interpolation and Pk+1dk = DkPk then the top and bottom sequences
have isomorphic cohomology.

Proof: The cohomology induced by Whitney interpolation is the simplicial cohomology
[Whitney 1957] which is isomorphic to the deRham cohomology [deRham]. �

Whitney interpolation provides for model conformity in simple cases.
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The DEC-deRham Diagram for R3

We combine the Discrete Exterior Calculus maps with the L2 deRham sequence.

deRham: H1
grad //

P0

��

{{

∗

##
H(curl) curl //

P1

��

}}

∗

!!
H(div)

div //

P2

��

L2

P3

��
primal: C0

D0 //

I0

OO

M0

��

C1
D1 //

I1

OO

M1

��

C2
D2 //

I2

OO

M2

��

C3

I3

OO

M3

��
dual: C3

(M0)−1

OO

C2

(D0)T
oo

(M1)−1

OO

C1

(D1)T
oo

(M2)−1

OO

C0

(D2)T
oo

(M3)−1

OO

The combined diagram helps elucidate primal and dual formulations of finite element
methods.
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Darcy Flow in R3 - Primal Flux
8><>:

~f + k
µ
∇p = 0 in Ω,
div~f = φ in Ω,
~f · n̂ = ψ on ∂Ω,

k , µ ∈ R; no external body force; p.w. smooth Γ := ∂Ω;
R

Ω
φdΩ =

R
∂Ω
ψdΓ

~f ∈ C2 is the volumetric flux through faces of the primal mesh

p ∈ C0
is the pressure at vertices of the dual mesh

Mixed (primal + dual) discretization:»
−(µ/k)M2 DT

2
D2 0

– »
~f
p

–
=

»
0
φ

–
.

~f
D2 //

M2

��

D2
~f

M2
~f

(D2)T p
p

(D2)T
oo

Ref: Hirani, Nakshatrala, Chaudhry, 2008
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Darcy Flow in R3 - Dual Flux
8><>:

~f + k
µ
∇p = 0 in Ω,
div~f = φ in Ω,
~f · n̂ = ψ on ∂Ω,

An equally valid discretization is as follows:

~f ∈ C2
is the volumetric flux through faces of the dual mesh

p ∈ C0 is the pressure at vertices of the primal mesh

New mixed discretization:»
−(µ/k)M−1

1 D0

(D0)T 0

– »
~f
p

–
=

»
0
φ

–
.

p
D0 // (M1)−1~f

D0p

(D0)T~f ~f
(D0)T

oo

(M1)−1

OO
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Conformity Criteria for Dual Variables

The Arnold-Falk-Winther model conformity criteria only considers primal
discretizations:

DEC-based mixed finite element methods require additional model conformity criteria.
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Stability Criteria for Dual Variables
If we have projection to or interpolation from a dual mesh, we have the maps:

deRham: Λk

Pk

��

��

∗

��
Λn−k

Pn−k

qq

primal: Ck

Ik

OO

Mk

��
dual: Cn−k

(Mk )−1

OO In−k

MM

More concisely, we expect some commutativity of the diagram:

deRham Λk

Pk

��

oo ∗ // Λn−k

Pn−k

��

deRham

primal Ck

Ik

OO

Mk //
Cn−k

(Mk )−1
oo

In−k

OO

dual
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Stability Criteria for Dual Variables

deRham Λk

Pk

��

oo ∗ // Λn−k

Pn−k

��

deRham

primal Ck

Ik

OO

Mk //
Cn−k

(Mk )−1
oo

In−k

OO

dual

We identify four “subcommutativity” conditions:

Commutativity at Λk : MkPk = Pn−k∗
Commutativity at Ck : ∗Ik = In−k Mk

Commutativity at Λn−k : (Mk )−1Pn−k = Pk∗
Commutativity at Cn−k

: Ik (Mk )−1 = ∗In−k

To evaluate these conditions, we must now define the various maps involved.

Computational Visualization Center , I C E S (Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette )The University of Texas at Austin Apr 2010 19 / 34
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Continuous Hodge Star

The continuous Hodge star is defined as the unique map ∗ : Λk → Λn−k satisfying
the property

α ∧ ∗β = (α, β)Λk µ, ∀α, β ∈ Λk

∧ denotes the wedge product

(·, ·)Λk denotes the inner product on k -forms

µ is the volume n-form on the domain

Example 1: In R3, let α = β = dx . Then

α ∧ ∗β = dx ∧ ∗dx = dx ∧ dydz = µ = (dx , dx)Λkµ = (α, β)Λk µ

Example 2: In R3, let α = dx , β = dy . Then

α ∧ ∗β = dx ∧ ∗dy = dx ∧ (−dxdz) = 0 = (dx , dy)Λkµ = (α, β)Λk µ

Computational Visualization Center , I C E S (Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette )The University of Texas at Austin Apr 2010 20 / 34
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Whitney Interpolation Map
The Whitney k -form ησk is associated to the k -simplex σk in the primal mesh.

σ0 := [vi ] ησ0 := λi

σ1 := [vi , vj ] ησ1 := λi∇λj − λj∇λi

σ2 := [vi , vj , vk ] ησ2 := 2 (λi∇λj ×∇λk + λj∇λk ×∇λi + λk∇λi ×∇λj )

σ3 := [vi , vj , vk , vl ] ησ3 := χσ3 =


1 on σ3

0 otherwise

where λi denotes the barycentric function for vertex vi .

The Whitney interpolation map Ik of a k -cochain ω, is

Ik (ω) :=
X
σk∈Ck

ω(σk )ησk .

Examples of Whitney 1-forms
associated to horizontal and vertical
edges, respectively

Computational Visualization Center , I C E S (Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette )The University of Texas at Austin Apr 2010 21 / 34
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Commutativity at Ck

Commutativity at Ck : ∗Ik = In−k Mk

Continuous Hodge star: α ∧ ∗β = (α, β)Λk µ, ∀α, β ∈ Λk

Whitney interpolation map: Ik (ω) =
X
σk∈Ck

ω(σk )ησk

It suffices to show that for any test function α ∈ Λk

α ∧ ∗Ik = α ∧ In−k Mk .

Check on a basis {ωk
i } where ωk

i is 1 on σk
i and 0 on all other k -simplices:

α ∧ ∗Ik (ωk
i ) = α ∧ In−k (Mkω

k
i ).

Use the definitions of Ik and ∗ to derive the condition:“
α, ησk

i

”
Λk
µ = α ∧ In−k (Mkω

k
i ).

This condition motivates definitions of the dual interpolation map In−k and the
discrete Hodge star Mk that ensure model conformity.
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Criteria Applied to Darcy Flow - Dual Flux

p
D0 // (M1)−1~f

D0p

(D0)T~f ~f
(D0)T

oo

(M1)−1

OO

We check for commutativity of the pressure data, i.e. at C0 with n = 3, k = 0:“
α, ησ0

i

”
H1
µ = α ∧ I3(M0ω

0
i ) ∀α ∈ H1

We use the Hodge star proposed by the authors of the paper

(M0)ii :=
| ? σk

i |
|σk

i |

We use any dual interpolant I3 mimicking Whitney forms, i.e.

I3(ω) :=
X

?σ0∈C3

ω(?σ0)χ?σ0
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Criteria Applied to Darcy Flow - Dual Flux

The left side: “
α, ησ0

i

”
H1
µ = (α, λi )H1 µ

=

„Z
K
αλi +∇α · ∇λi

«
µ

The right side:

α ∧ I3(M0ω
0
i ) = α ∧

X
?σ0∈C3

(MDiag
0 ωi )(?σ0)χ?σ0µ

= α ∧ | ? σ0
i |χ?σ0

i
µ

= α| ? σ0
i |χ?σ0

i
µ

The condition: „Z
K
αλi +∇α · ∇λi

«
µ = α| ? σ0

i |χ?σ0
i
µ ∀α ∈ H1

Computational Visualization Center , I C E S (Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette )The University of Texas at Austin Apr 2010 24 / 34
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Criteria Applied to Darcy Flow - Conclusions

Dual flux condition:„Z
K
αλi +∇α · ∇λi

«
µ = α

˛̨̨
?σ0

i

˛̨̨
χ?σ0

i
µ ∀α ∈ H1

Primal flux condition: „Z
K
α(x)λi (x)

«
µ = α

˛̨̨
σ3

i

˛̨̨
χσ3

i
µ ∀α ∈ L2

In both instances, an arbitrary test function α must be approximately constant on
a neighborhood of vertex i and this constant is a multiple of a measure of the
region and an integral involving α.

This is certainly false in general, as L2 or H1 functions need not be locally
constant.

Hence, the diagonal Hodge star espoused by the authors does not provide a
conforming method in the general setting, in either of the possible mixed finite
element methods.
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Elasticity Basics

(image from Wikipedia)

Elasticity problems try to find the stress
σ on a domain Ω ⊂ R3 via:

net force
(known) =

Z
Ω

body forces

=

Z
∂Ω

σ · ~n

=

Z
Ω

divσ

Stress is treated as a 2-tensor since it pairs with a velocity field ~v and ~n

[ v1 v2 v3 ]

24 σ11 σ12 σ13

σ12 σ22 σ23

σ31 σ23 σ33

35 [ n1 n2 n3 ]T

Stress is symmetric: the σii are normal stresses while σij are shear stresses.
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Elasticity as a PDE in R3 (Strong Symmetry)
Solve for stress σ and displacement u given a body force field f :

Aσ = sym~∇u in Ω
divσ = f in Ω

plus boundary conditions, where

u ∈ V := tangent space at x ∈ Ω ∼= R3

σ ∈ S := symmetric second order tensors

The operator sym~∇ is the symmetric gradient:

sym~∇ : V → S

sym~∇u =
1
2

24 ∂x

∂y

∂z

35 [ u1 u2 u3 ] +
1
2

24 u1

u2

u3

35 [ ∂x ∂y ∂z ]

The operator A is called a compliance tensor:

A : S → S

It describes the relation between the stress σ and strain sym~∇u.
Computational Visualization Center , I C E S (Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette )The University of Texas at Austin Apr 2010 28 / 34
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Elasticity Complex in R3


Aσ = sym~∇u in Ω

divσ = f in Ω

V = tangent space at x ∈ Ω ∼= R3

S = symmetric second order tensors

Arnold, Falk and Winther derived the following elasticity complex:

C∞(V)
sym ~∇ // C∞(S)

J // C∞(S)
div // C∞(V)

u sym~∇u σ divσ

Note that u is a V -valued 0-form while σ is a S-valued 2-form.

We now look at how this sequence was derived.

Computational Visualization Center , I C E S (Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette )The University of Texas at Austin Apr 2010 29 / 34
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deRham-AFW Elasticity Diagram

W := V × S dW :=

„
d 0
0 d

«
π1, π2 are surjections

Λ0(W)
dW,0 //

Φ0

��

Λ1(W)
dW,1 //

π1◦Φ1

��

Λ2(W)

π2◦Φ2

��

dW,2 // Λ3(W)

Φ3

��
C∞(V)

sym ~∇ //

Φ−1
0

OO

C∞(S)
J // C∞(S)

div // C∞(V)

Φ−1
3

OO

Since π1, π2 are surjections but not isomorphisms, we have

dim
“

ker J/im sym~∇
”
≤ dim (ker dW,1/im dW,0)

dim (ker div/im J) ≤ dim (ker dW,2/im dW,1)

Question: Under what conditions are these the inequality sharp? In other words, when
is the model non-conforming?

Computational Visualization Center , I C E S (Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette )The University of Texas at Austin Apr 2010 30 / 34
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DEC-deRham-AFW Elasticity Diagram

W := V × S dW :=

„
d 0
0 d

«
π1, π2 are surjections

Λ0(W)
dW //

Φ0

��

zz

∗

$$
Λ1(W)

dW //

π1◦Φ1

��

}}

∗

!!
Λ2(W)

dW //

π2◦Φ2

��

Λ3(W)

Φ3

��
C∞(V)

sym ~∇ //

P0

��

Φ−1
0

OO

C∞(S)
J //

P1

��

C∞(S)
div //

P2

��

C∞(V)

P3

��

Φ−1
3

OO

C0(V)
sym~D0 //

I0

OO

M0

��

C1(S)
~D1 //

I1

OO

M1

��

C2(S)
~D2 //

I2

OO

M2

��

C3(V)

I3

OO

M3

��
C3

(V)

(M0)−1

OO

C2
(S)

(sym~D0)T
oo

(M1)−1

OO

C1
(S)

(~D1)T
oo

(M2)−1

OO

C0
(V)

(~D2)T
oo

(M3)−1

OO
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Primal-Dual Discretization


Aσ = sym~∇u in Ω,

divσ = f in Ω,

Yavari’s discretization (J. Math. Physics, 2008):

u ∈ C0(V) = V-valued primal 0-cochains

σ ∈ C2
= S-valued dual 2-cochains

u
sym~D0 //

sym~∇u
Aσ

f
divσ

σ
(sym~D0)T

oo

A

OO

This raises a number of research directions. . .
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Additional Research Directions

u
sym~D0 //

sym~∇u
Aσ

f
divσ

σ
(sym~D0)T

oo

A

OO

Clarify definitions of operators on vector- and matrix-valued cochains.

Define interpolants Ik and projections Pk for these spaces.

Derive model conformity criteria for the elasticity complex.
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Questions?

Thanks for inviting me to speak!

Slides available at http://www.ma.utexas.edu/users/agillette
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