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Why Geometric Discretization?

B in equilibrium

geometric discretization

��

balance laws // integral balance laws

localization

��
discrete governing equations governing differential equations

discretization of BVP
oo

Geometric discretization techniques attempt to simplify the process of modeling the
balance laws discretely. For field theory modeling, this first requires a full
comprehension of the geometry of the continuous theory.
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Why Differential Forms?

Generality: Differential forms provide a unified abstract setting to correctly
capture the full mathematical structures of the field geometry in question.

Coordinate Independence: Forms do not rely on the particular embeddings of
the surfaces being modeled. Coordinates are specified at the last stage of
modeling, thereby enhancing numerical computations.

Dependence Identification: Casting problems into a differential forms
framework highlights whether the involved quantities and operators are
topologically or metric dependent. This allows for better design of discrete
algorithms that preserve the continuous physical laws being modeled.
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Comparison to Prior Work

Yavari is careful to point out that geometric discretization is not the same as an
approach called the “cell method” developed by Tonti∗ and expanded by others
(Cosmi; Ferretti; Pani et al.).

Cell Method: discretize the domain (i.e. make a mesh) and assume that
deformation is homogeneous within each cell. This formulation is called ab initio
since it does not reference the corresponding continuum formulation.

Geometric Discretization method: discretize the operators (i.e. use discrete
differential forms) and deduce the according relationships on a mesh of the
domain. This approach to stress and elasticity is quite new, dating back only to
2006.

∗E. TONTI A direct discrete formulation of field laws: The cell method, Comput. Model.
Eng. Sci, 2001.
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Review: Forms for EM

Characterization of k -forms

A k -form represents an intrinsically k -dimensional phenomena and can be integrated
over a k -dimensional region.

∇× H = ∂D
∂t + JE

∇× E = − ∂B
∂t

∇ · B = 0

∇ · D = ρE

9>>>>>>>>=>>>>>>>>;
vector calculus vs. differential forms

8>>>>>>>><>>>>>>>>:

dH = ∂D
∂t + JE

dE = − ∂B
∂t

dB = 0

dD = ρE
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Stress, Strain, and Elasticity
Consider a piece of clay as shown:

The stress on the clay is a measure of (force / area):

stress =
100
π

dynes
cm2

It has a direction parallel to the force (normal to cross-section).
The strain on the clay is the fractional extension in the direction of the stress. If
the force caused the clay to stretch 2 cm, the strain experienced was 2 cm / 10
cm = 0.2, a dimensionless quantity.
The elasticity of the clay is its ability (or inability) to return to its original shape
after receiving stress.

Hence, before tackling the geometry of elasticity, we must first understand the
geometry of stress.
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Classical Stress Theory

The classical approach to modeling stress in R3 is as follows.
1 Assume the existence of a traction vector field

t(~x , t ;~n) : R3 × R× R3 −→ R3

which gives the force per unit area exerted on a surface through ~x with normal ~n
at time t .

sample t unit:
kg

ms2

2 Suppose the surface is moving according to a spatial velocity field ~v(~x , t). Then
the rate of work Rt done by the traction forces on an oriented surface S is

Rt =

Z
S
< ~v , t > da

Throughout, < ·, · > indicates the “natural pairing” of the fields involved, which in
this case means the dot product.

sample Rt unit:
kgm2

s3
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Classical Stress Theory

3 Cauchy’s Theorem, a.k.a. the Stress Principle states that t is linear in ~n. That is,
there exists a 2-tensor σ such that

t(~x , t , ~n) =< σ(~x , t), ~n >

To clarify: σ is a 2-tensor dependent on ~x and t . Its inputs as a tensor are ~v and
~n, in that order. Thus, σ can be associated to a 3x3 matrix (whose coefficients
depend on ~x and t) where the action of σ on {~v , ~n} is

[v1v2v3]

264 σ11 · · ·
...

. . .
σ33

375 [n1n2n3]T

The drawback to this approach: σ is highly coordinate dependent.
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Stress with Differential Forms

Solution: use differential forms to abstract the stress model.

Since stress is dependent on both a 1-form (velocity vector field) and a 2-form
(patch of a surface) it is properly modeled as a tensor product of forms:

T ∈ Λ1(R)⊗ Λ2(R)

where Λk (R) is the space of k -forms on our surface R. We say that T is a
covector-valued 2-form.

In coordinates, we can write:

T = σabdxa ⊗ (∗dxb)

To clarify, σab is the matrix associated to the stress tensor, dxa indicates the
appropraite coordinate of velocity ~v , and ∗dxb indicates the Hodge star applied
to ~n, i.e. the appropriate coordinates of the plane defined by ~n.

Kanso et al. explain “Physically, T can be interpreted as follows: the stress, upon
pairing with a velocity field, provides an area-form that is ready to be integrated
over a surface to give the rate of work done by the stress on that surface.”
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Rate of Work with Differential Forms

Using differential forms, we re-write the rate of work Rt as follows.

Rt =
R

S < ~v , t > da =
R

S < ~v , σ(·, ~n) > da

=
R

S σ(~v , ~n)da =
R

S < σ(~v , ·), ~nda >

=
R

S ∗2σ(v , ·)

=
R

S < ~v , ∗2σ >

=
R

S < ~v , T >

Kanso et al: “Notice that if the orientation of S switches, then the sign of the integral
automatically switches and this corresponds to the change of sign of ~n in the
traditional approach.” In other words, we have removed the coordinate-dependence
from the definition of stress.
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Discrete Stress

Given a simplicial complex K , a k -chain is a linear combination of the k -simplicies of
K . Note that a triangulated surface mesh is a simplicial complex.

A discrete differential k -form is a k -cochain ω, i.e. a linear map from the space of
k -chains Ck to R:

ω : Ck → R
A discrete vector-valued differential k -form ψ returns a vector instead of an element of
R:

ψ : Ck → V, V = R3 or other vector space

A discrete covector-valued k -form α returns a covector instead of a vector:

α : Ck → V∗, i.e. α(ck ) is a vector-valued function

Discrete stress should be a discrete covector-valued 2-form (for surfaces) since, given
an area patch, it should output a method for evaluating the velocity vector field. To
explain this further, we need to discuss primal and dual meshes.
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Primal and Dual Meshes

A primal mesh K has a dual mesh
?K , such as the barycentric dual
shown.

There is a 1-1 correspondence
between primal k -cells and dual
(n − k)-cells.

However, the dual mesh lacks
many basic properties of the primal
mesh, e.g. convex cells and a fixed
number of edges per cell.

Further, it is non-canonical as other
types of dual meshes (e.g.
circumcentric) exist.

discrete primal k -form −→ valued on primal k -cells

discrete dual k -form −→ valued on dual k -cells

figure from [Yavari 2008]
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Discrete Stress

Discrete stress Th is a discrete covector-valued dual 2-form.

primal vertex σ0 ?−→ dual 2-cell ?σ0 Th−→ covector on ∂(?σ0)

Further, the covector Th(?σ0) has non-zero values only on the 1-cells ∂(?σ0) and its
evaluation depends on the orientation of ∂(?σ0), as induced by the orientation of the
surface.

Upshot of this approach: guarantees balance of linear momentum on dual 2-cells.
figure from [Yavari 2008]
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Balance of Linear Momentum

Differential forms generalize the various balance laws in elasticity theory. We will focus
on only one example: balance of linear momentum. Fix the variables

σ := Cauchy Stress 2-tensor

ρ := mass density

~b := body force
~a := inertial force

The geometric version is
divσ + ρ~b = ρ~a

The differential forms version is

dT + b⊗ ρ = a⊗ ρ

The geometric discretization is

< dT , ?ck > + < b, ?ck >=< a, ?ck >

Note a and b are covector-valued 3-forms. Also note that the exterior derivative d is
acting on a covector-valued form T ; the specification of this operation requires some
additional theory beyond the scope of this talk.
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Geometric Formulation of Linear Elasticity
For problems of dimension p=2 or 3 we have these matrices:

Name Symbol Size

k th primal incidence matrix (∂T
k ) Mk #σk+1 ×#σk

k th dual incidence matrix eMk # ? σp−k−1 ×# ? σp−k

discrete stress matrix T # ? σ1 × p
unit normal vectors N p ×#σ1

body force matrix B #σ1 ×#σ1 (?)
acceleration matrix A #σ1 ×#σ1 (?)

Balance of linear momentum reads:eM2T + B = A (3D)eM1T + B = A (2D)
Balance of angular momentum reads:

TN = 0

Compatibility equations can also be formulated.
“In this theory, the only metric-dependent matrices are A and N; all the others are
topological” [Yavari 2008]
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Summary of Discrete Quantities

In this talk we have discussed only a few of the variables analyzed by the authors.

Quantity Symbol Type
Velocity ~v vector-valued 0-form

Displacement ~u vector-valued 0-form
Strain F vector-valued 1-form

Mass desnity ρ dual p-form
Internal energy density e support volume-form

Specific entropy N support volume-form
Heat flux h dual (p-1)-form

Heat supply r dual p-form
Stress T covector-valued (p-1)-form

Body force b covector-valued dual p-form
Kinetic energy density κ dual p-form

Notation from [Yavari 2008] for problems in dimension p = 2 or 3.
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Future Work in this field

Implement this discrete algorithm.

Compare implementation to existing finite element and other numerical methods
for elasticity.

Analyze convergence issues associated with this approach.
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