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Introduction

Molecular dynamics are governed by electrostatic
forces of attraction and repulsion.

These forces are described as the solutions of a PDE
over the molecular surfaces.

Molecular surfaces may have complicated topological
features affecting the solution.

The Hodge Decomposition relates topological properties of the surface to solution
spaces of PDEs over the surface.

(space of forms) ∼= (solutions to ∆u = f 6≡ 0) ⊕ (non-trivial deRham classes)
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Outline

1 The Hodge Decomposition for smooth differential forms

2 The Hodge Decomposition for discrete differential forms

3 Applications of the Hodge Decomposition to biological modeling
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Differential Forms

Let Ω denote a smooth n-manifold and Tx(Ω) the tangent space of Ω at x . A k -form ω
is a mapping from Ω to the space of alternating k -tensors on the tangent space of Ω at
the input point:

ω : Ω→ Λk [Tx (Ω)∗], ω(x) :

kM

i=1

Tx (Ω)→ R,

where ω(x) is an alternating k -tensor. The space of k -forms is denoted Λk (Ω).

Alternate Characterization of k -forms

A k -form represents an intrinsically k -dimensional phenomena and can be integrated
over a k -dimensional region.

valued based on a
electric fields are

and valued on planes

magnetic fields are
are dual to electric fields

charge density is
valued over a volume

E B q

linear current flow
potential is
point−valued

u

electric
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The Exterior Derivative Operator

The exterior derivative operator denoted by d is

d : Λk (Ω)→ Λk+1(Ω),

defined as follows. Let I := {i1, . . . , ik} denote an increasing sequence of k indices
(ij < ij+1) and let dxI = dx1 ∧ · · · ∧ dxk . Given ω =

P
I aIdxI define

dω :=
X

I

daI ∧ dxI where daI :=
X

i∈I

∂aI

∂xi
dxi

The exterior derivative generalizes the familiar operators grad, curl, and div for Ω = R
3:

0 −−−−−→ Λ0(Ω)
d

−−−−−→
grad

Λ1(Ω)
d

−−−−−→
curl

Λ2(Ω)
d

−−−−−→
div

Λ3(Ω) −−−−−→ 0

Example: Given f ∈ Λ0(R3), we have f : R
3 → R. Accordingly:

grad f :=

„
∂f
∂x

,
∂f
∂y

,
∂f
∂z

«
=

∂f
∂x

dx +
∂f
∂y

dy +
∂f
∂z

dz =: df
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Stokes’ Theorem

Stokes’ Theorem

Given a compact, oriented n-dimensional manifold Ω with boundary ∂Ω and a smooth
(n − 1) form ω on Ω, the following equality holds:

Z

∂Ω

ω =

Z

Ω

dω

Alternate Characterization of d

Let ω be a k -form on a compact oriented n-manifold Ω (0 ≤ k < n). Then dω is the
unique (k + 1)-form such that on any (k + 1)-dimensional submanifold Π ⊂ Ω the
following holds Z

Π

dω =

Z

∂Π

ω
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Inner Products

We would like to construct an operator going the other way in the sequence:

0 ←−−−−− Λ0(Ω)
δ

←−−−−− Λ1(Ω)
δ

←−−−−− Λ2(Ω)
δ

←−−−−− Λ3(Ω)
δ

←−−−−− 0

To do so, we must first fix an inner product on our space.

An inner product (·, ·)V on a vector space V is linear in each variable, symmetric, and
non-degenerate, i.e. given α ∈ V : (α, β) = 0 ∀β ⇐⇒ α = 0.

An inner product (·, ·)V on V extends to an inner product (·, ·) on Λ(V )

Let {e1, . . . , en} be an orthonormal basis of V . We say that elements of the form
ei1 ∧ . . . ∧ eik have grading k . Define the inner product of elements with different
gradings to be zero. Define

(ei1 ∧ . . . ∧ eik , ej1 ∧ . . . ∧ ejk ) := det

0
B@

(ei1 , ej1)V · · · (ei1 , ejk )V

...
. . .

...
(eik , ej1)V · · · (eik , ejk )V

1
CA ∈ {−1, 0, 1}

Extend the above definitions bilinearly for arbitrary elements of Λ(V ).

Computational Visualization Center , I C E S ( Department of Mathematics, Institute of Computational Engineering and Sciences UniversityThe University of Texas at Austin Dec 2008 8 / 32



university-logo

The Hodge Star Operator

The Hodge Star operator denoted by ⋆ is

⋆ : Λk (Ω)→ Λn−k(Ω).

Let {e1, . . . , en} be an orthonormal basis for V with positive orientation. For
0 < k < n, let σ ∈ Sn satisfy σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(n). Define

⋆
`
eσ(1) ∧ . . . ∧ eσ(k)

´
:= sign(σ)

`
eσ(k+1) ∧ . . . ∧ eσ(n)

´
.

For k = 0 and k = n, ⋆ is defined by ⋆(1) = ±e1 ∧ · · · ∧ en and ⋆(e1 ∧ · · · ∧ en) = ±1.

Example: ⋆dxdz = ⋆dx1 ∧ dx3 = sign (1 3 2)dx2 = −dx2 = −dy

Alternate Characterization of ⋆

The Hodge Star is the unique operator satisfying the relationship

α ∧ ⋆β = (α, β)µ ∀α, β ∈ Λk (V ),

where µ := e1 ∧ · · · ∧ en is the volume element of Λ(V ).
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The Codifferential Operator

The (exterior) codifferential operator denoted by δ is

δ : Λk (Ω)→ Λk−1(Ω)

defined as the formal adjoint to d with respect to the inner product (·, ·) on Λ(Ω). That
is, given η ∈ Λk (Ω), δη is the unique element of Λk−1(Ω) satisfying

(dω, η) = (ω, δη)

for all ω ∈ Λk−1(Ω).

Alternate Characterization of δ

Given an inner product on Λ(V ), where V has dimension n, the action of δ on a k -form
is given by

δ = (−1)nk+1 ⋆ d⋆

Example: δ(xyzdxdz) = (−1)3(2)+1 ⋆ d(−xyzdy) = ⋆d(xyzdy)

= ⋆(yzdxdy − xydydz) = yzdz − xydx
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The Laplacian Operator

The Laplacian operator denoted by ∆ is

∆ : Λk (Ω)→ Λk (Ω)

given by
∆ := dδ + δd

Note that ∆ reduces to the typical Laplacian operator when k = 0. By the definitions,
d0 = ∇ and δ1 = div. Hence

∆0 = d−1δ0 + δ1d0 = δ1d0 = div∇ = ∇ · ∇ =

nX

i=1

∂2

∂x2
i

.

Therefore, understanding solutions to the differential form problem ∆ω = α for a given

form α will shed light on the Laplace and Poisson PDE problems.
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The Hodge Decomposition

The space of harmonic k -forms is

H
k := {ω ∈ Λk (Ω) : ∆ω = 0}

The Hodge Decomposition Theorem

For each integer k with 0 ≤ k ≤ n, H
k is finite dimensional and we have the following

orthogonal direct sum decompositions of Λk (Ω) of smooth k -forms on Ω:

Λk (Ω) = ∆(Λk )⊕ H
k

= dδ(Λk)⊕ δd(Λk )⊕ H
k

= d(Λk−1)⊕ δ(Λk+1)⊕ H
k .

Consequently, the equation ∆ω = α has a solution ω ∈ Λk (Ω) if and only if the k -form
α is orthogonal to the space of harmonic k -forms.
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Relation to Cohomology

Recall that the deRham complex on Ω is

0 −−−−−→ Λ0(Ω)
d0−−−−−→ Λ1(Ω)

d1−−−−−→ · · ·
dn−1
−−−−−→ Λn(Ω) −−−−−→ 0.

The k th deRham cohomology group is denoted Hk
dR(Ω) and is given by

Hk
dR := ker dk/imdk−1

Lemma

Let Ω be a compact oriented Riemannian n-manifold Ω without boundary and
0 ≤ k ≤ n. Then

Hk
dR(Ω) ∼= H

k .

Abbreviated Proof:
Hk

dR =
h
d(Λk−1)⊕ H

k
i
/d(Λk−1) ∼= H

k
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Summary of Smooth Hodge Decomposition Facts

Summary of results in the smooth setting:

k -forms are meant to be integrated over k dimensional regions

d : Λk → Λk+1 is characterized by Stokes’ theorem

⋆ : Λk → Λn−k is characterized by α ∧ ⋆β = (α, β)µ

δ : Λk → Λk−1 is characterized by δ = (−1)nk+1 ⋆ d⋆

The Hodge Decomposition is Λk = dΛk−1 ⊕ δΛk+1 ⊕ H
k

Solutions to the Poisson equation ∆ω = α lie in dΛk−1 ⊕ δΛk+1

Solutions to the Laplace equation ∆ω = 0 are exactly the harmonic forms H
k

Each k -cohomology class of Ω has a unique harmonic k -form representative.

How can we recreate these results on a discrete level for computational modeling?

smooth: 0 Λ0

δ0

oo
d0 //

��

Λ1

δ1

oo
d1 //

��

Λ2

δ2

oo
d2 //

��

Λ3

δ3

oo
d3 //

��

0

discrete: 0 // C0 //

OO

C1 //

OO

C2 //

OO

C3 //

OO

0
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Outline

1 The Hodge Decomposition for smooth differential forms

2 The Hodge Decomposition for discrete differential forms

3 Applications of the Hodge Decomposition to biological modeling
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Discrete Differential Forms

k-forms are meant to be integrated over k dimensional regions

Let T be a triangulation of a smooth compact n-manifold Ω. Let Tk denote the
k -simplicies of T. A k -chain c is a linear combination of the elements of Tk :

c =
X

τ∈Tk

cτ τ, cτ ∈ R

The set of all such chains form the vector space of k -chains is denoted Ck .
A k -cochain ω is a linear map

ω : Ck → R

The vector space of k -cochains is denoted Ck .

v0 v1

v2v3

e0

e3

e4

e2
e1

f 0

f 1

Cochains are the discrete analogues of
differential forms.
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The Boundary Operator

The k th boundary operator denoted by ∂k takes a k -chain to its (k − 1)-chain
boundary. Its action on a k -simplex is

∂k [v0, v1, · · · , vk ] :=

kX

i=0

(−1)i [v0, · · · , bvi , · · · , vk ]

where bvi indicates that vi is omitted.

v0 v1

v2v3

e0

e3

e4

e2
e1

f 0

f 1

Let c = f1 + f2. Then ∂kc =

2
66664

1 0
−1 0

1 −1
0 1
0 1

3
77775

»
1
1

–
=

2
66664

1
−1

0
1
1

3
77775

= e0 − e1 + e3 + e4
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Discrete Exterior Derivative

d : Λk → Λk+1 is characterized by Stokes’ theorem

The k th discrete exterior derivative is the transpose of the (k + 1)st boundary
operator: Dk = ∂T

k+1

Example: Let ω be the 1-cochain ω(ei) := i .

D1ω =

»
1 −1 1 0 0
0 0 −1 1 1

–
2
66664

0
1
2
3
4

3
77775

=

»
1
5

–

v0 v1

v2v3

e0

e3

e4

e2
e1

f 0

f 1

Z

e0−e1+e3+e4

ω =

2
66664

0
1
2
3
4

3
77775

T 2
66664

1
−1

0
1
1

3
77775

= −1+3+4 = 6 = 1+5 =

»
1
5

–T »
1
1

–
=

Z

f0+f1

D1ω
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Maps Between Smooth and Discrete Forms
To pass our theory between smooth and discrete settings, we will need maps:

Λk

Rk

��
Ck

Ik

OO Ω

h−1

��
T

k

h

OO

The k th deRham map Rk : Λk → Ck is defined as follows. Let T be a triangulation of
Ω with h : T→ Ω a homeomorphism. Given ω ∈ Λk and c ∈ Ck a chain, define

(Rkω)(c) :=

Z

h(c)

ω

The map R satisfies Rd = DR, i.e. the following is a commutative diagram:

Λk

Rk

��

dk // Λk+1

Rk+1

��
Ck

Dk // Ck+1
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Maps Between Smooth and Discrete Forms

The map Ik : Ck → Λk is called an interpolation map and has no canonical choice
since R is not invertible. We can require, however, that Ik be chosen such that:

RI = id (consistency)

IR = id + O(hs) (approximation)

where h ∈ R>0 is the partition size of the mesh and s ∈ R>0 is the approximation

order.
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Whitney Maps
The Whitney map is a commonly used interpolation operator. The idea is to construct
a basis of k -forms whose support is defined relative to a particular k -simplex.

Let τ := [v0, . . . , vk ] denote a k -simplex and [µ0, . . . , µk ] the barycentric coordinate
functions of τ . The Whitney form ητ ∈ Λk associated to this simplex is defined by

ητ := k !

kX

i=0

(−1)iµidµ0 ∧ . . . ∧ddµi ∧ . . . ∧ dµk

where ddµi indicates that dµi is omitted. Given ω ∈ Ck a k -cochain, its Whitney
interpolant I(ω) is

I(ω) :=
X

τ∈Ck

ω(τ )ητ
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Discrete Hodge Star

⋆ : Λk → Λn−k is characterized by α ∧ ⋆β = (α, β)µ

To capture this relationship, we have two choices:

1 Define an inner product of two cochains and induce a discrete Hodge Star.

2 Define a discrete Hodge Star and induce an inner product.

We will examine each in turn.
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Discrete Hodge Star via Inner Product

⋆ : Λk → Λn−k is characterized by α ∧ ⋆β = (α, β)µ

1 Define an inner product of two cochains and induce a discrete Hodge Star.

Let a, b ∈ Ck . The inner product of k -cochains is defined by (a, b)Ck := (Ia, Ib)Λk

This definition allows for two possible discrete Hodge stars.

The natural discrete ⋆, given by ⋆N := R ⋆ I so that

(a, ⋆Nb)Ck = (Ia, IR ⋆ Ib)Λk

which implies ⋆NR = R⋆

The derived discrete ⋆, induced by
R

a ∧ ⋆Db :=
R
Ia ∧ ⋆Ib so that

(a, ⋆Db)Ck = (Ia, ⋆Ib)Λk

which implies
R

a ∧ ⋆Da = (a, a) for a ∈ Ck

Remark: the property implied by one definition is not implied by the other!
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Discrete Hodge Star directly

⋆ : Λk → Λn−k is characterized by α ∧ ⋆β = (α, β)µ

2 Define a discrete Hodge Star and induce an inner product.

Observe that an (n− k)-cochain is defined by its action on (n − k)-chains, however
there is no canonical way to map a k -simplex to an (n− k)-simplex in the same mesh.

Since we would like the discrete ⋆ to be a square matrix, we ask that it associate a
k -cochain on the primal mesh to an (n − k)-cochain on the dual mesh. The i , j entry
of the discrete ⋆ should be a weight wij of the i th primal k -chain to the j th dual
(n − k)-chain.
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Discrete Hodge Star directly

⋆ : Λk → Λn−k is characterized by α ∧ ⋆β = (α, β)µ

One simple but concrete approach is the following (from Desbrun, Kanso, Tong 2006):

Let {τi} be the k -simplicies of a triangulation T of a smooth n-manifold. Let ∗τ denote
the dual of τ and |τ | the measure of τ . Then the discrete Hodge Star ⋆k is a matrix of
size |Ck | × |Ck | with diagonal entries

(⋆k )ii := | ∗ τi |/|τi |

and all other entries zero.

To achieve the desired characterization, we define the inner product accordingly.

Let α, β be k -cochains. Then their inner product is

(α, β) := αT ⋆k β =

|Ck |X

i=1

αi

„
| ∗ τi |

|τi |

«
βi

where α = [α1 · · ·α|Ck |]
T , β = [β1 · · ·β|Ck |]

T
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Discrete Codifferential and Hodge Decomposition

δ : Λk → Λk−1 is characterized by δ = (−1)nk+1 ⋆ d⋆

A discrete codifferential is defined based on the choice of discrete Hodge star.

Let ω be a k -cochain and ⋆ a discrete Hodge star. The discrete codifferential of ω is
given by the matrix multiplications

δω := (−1)nk+1 ⋆ D ⋆ ω

Remark: Alternatively, we could define δ based on the relationship (α, δβ) = (Dα, β)
however this may differ from the above definition by O(hs).

We now consider how this is implemented and its implications for biological modeling.
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Prior Work
POLTHIER AND PREUSS Identifying vector fields singularities using a discrete hodge
decomposition Proc. of Vis. Math. III, 2003
TONG, LOMBEYDA, HIRANI AND M. DESBRUN Discrete multiscale vector field
decomposition ACM Trans. Graph., 22(3), 2003.

Detect and classify singularities of 2D (former) and 3D (latter) vector fields by
minimizing certain functionals to capture the divergence-free and curl-free
components.

Arguably more robust than Jacobian-based methods of singularity detection
since there is no need to approximate partial derivatives.

Requires solving a global linear system which may be unfeasible for the large
data sets encountered in the biological domain.
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Prior Work

ARNOLD, FALK AND WINTHER Finite element exterior calculus, homological
techniques, and applications Acta Numerica, 2006.

Give spaces of polynomials defined over a mesh and operatorsR and I such
that a discrete Hodge decomposition is obtained.

Establish bounds on the size of each component in the discrete Hodge
decomposition. These bounds are shown to be independent of h (the mesh size)
using approximation properties of the projections and elliptic regularity.

Prove that the spaces described ensure stability of the method in the sense
characterized by the Babuska inf-sup condition. (Loosely, this means the
computed solution depends continuously on the input data).
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Prior Work

TARHASAARI, KETTUNEN, BOSSAVIT Some realizations of a discrete Hodge operator:
a reinterpretation of finite element techniques IEEE Trans. Magnetics 35:3, 1999
HIRANI Discrete Exterior Calculus Dissertation, Cal Tech, 2003.
BOCHEV AND HYMAN Principles of Mimetic Discretizations of Differential Operators in
“Compatible Spatial Discretizations,” 2006.
BELL Algebraic Multigrid for Discrete Differential Forms Dissertation, UIUC, 2008.

Using Whitney interpolation for Ik , define a “mass matrix” M:

Mk(i , j) := (Ik ei , Ik ej)

The discrete Hodge Decomposition of a k -cochain ωk is then

ωk = Dk−1α
k−1 + M

−1
k D

T
k Mk+1β

k+1 + hk

The components can be computed by finding a basis for the space of harmonic
k -cochains and projecting ωk onto the basis elements.
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Research Questions

Is Bell’s method appropriate for use in biological domains? Can we instead
develop a domain-sensitive selection of bases for molecular force field vector
components?

What is the relative strength of the components of the force field given by the
Hodge decomposition in biological settings? How much does this depend upon
the choice of discrete Hodge star (⋆N, ⋆D, ⋆k , . . .)?

Can Hodge-based analysis aid in the construction of a stable solution of
molecular force fields using low degree algebraic spline vector finite elements
(e.g. A-patches)?
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