Nodal Basis Functions for Serendipity Finite Elements

Andrew Gillette

Department of Mathematics
University of Arizona

joint work with Michael Floater (University of Oslo)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction and Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Approach</td>
</tr>
<tr>
<td>3</td>
<td>Results</td>
</tr>
<tr>
<td>4</td>
<td>Future Directions</td>
</tr>
</tbody>
</table>
Outline

1. Introduction and Motivation
2. Approach
3. Results
4. Future Directions
What is a serendipity finite element method?

Goal: Efficient, accurate approximation of the solution to a PDE over $\Omega \subset \mathbb{R}^n$. Standard $O(h^r)$ tensor product finite element method in \mathbb{R}^n:

→ Mesh Ω by n-dimensional cubes of side length h.
→ Set up a linear system involving $(r + 1)^n$ degrees of freedom (DoFs) per cube.
→ For unknown continuous solution u and computed discrete approximation u_h:

$$||u - u_h||_{H^1(\Omega)} \leq C h^r |u|_{H^{r+1}(\Omega)}, \quad \forall u \in H^{r+1}(\Omega).$$

A $O(h^r)$ serendipity FEM converges at the same rate with fewer DoFs per element:

<table>
<thead>
<tr>
<th>tensor product elements</th>
<th>$O(h)$</th>
<th>$O(h^2)$</th>
<th>$O(h^3)$</th>
<th>$O(h)$</th>
<th>$O(h^2)$</th>
<th>$O(h^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>serendipity elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: For $O(h^3)$, $n = 3$, 50% fewer DoFs $\rightarrow \approx 50\%$ smaller linear system
Motivations and Related Topics

Serendipity elements are an essential tool in modern efforts to robustly implement and accelerate high order computational methods.

- **Isogeometric analysis:** Finding basis functions suitable for both domain description and PDE approximation avoids the expensive computational bottleneck of re-meshing.

- **Modern mathematics:** Finite Element Exterior Calculus, Discrete Exterior Calculus, Virtual Element Methods...

- **Flexible Domain Meshing:** Serendipity type elements for Voronoi meshes provide computational benefits without need of tensor product structure.

Mathematical challenges

→ Basis functions must be constructed to implement serendipity elements.
→ Current constructions lack key mathematical properties, limiting their broader usage

Goal: Construct basis functions for serendipity elements satisfying the following:

- **Symmetry:** Accommodate interior degrees of freedom that grow according to triangular numbers on square-shaped elements.
- **Tensor product structure:** Write as linear combinations of standard tensor product functions.
- **Dimensional nesting:** Generalize to methods on n-cubes for any $n \geq 2$, allowing restrictions to lower-dimensional faces.

![Graphs showing the growth of degrees of freedom for different n and h values](image-url)
Outline

1. Introduction and Motivation
2. Approach
3. Results
4. Future Directions
Which monomials do we need?

\[O(h^3) \]
serendipity element:

\[\{1, x, y, x^2, y^2, xy, x^3, y^3, x^2y, x^3y, xy^3, x^2y^2, x^3y^2, x^3y^3, x^2y^3, x^3y^3\} \]

- total degree at most cubic
 (req. for \(O(h^3) \) approximation)

- at most cubic in each variable
 (used in \(O(h^3) \) tensor product methods)

We need an intermediate set of 12 monomials!

The superlinear degree of a polynomial ignores linearly-appearing variables.

Example: \(\text{sldeg}(xy^3) = 3 \), even though \(\text{deg}(xy^3) = 4 \)

Definition: \(\text{sldeg}(x_1^{e_1}x_2^{e_2}\cdots x_n^{e_n}) := \left(\sum_{i=1}^{n} e_i \right) - \# \{e_i : e_i = 1\} \)

\[\{1, x, y, x^2, y^2, xy, x^3, y^3, x^2y, x^3y, xy^3, x^2y^2, x^3y^2, x^3y^3\} \]

superlinear degree at most 3 (dim=12)

Superlinear polynomials form a lower set

Given a monomial

\[x^\alpha := x_1^{\alpha_1} \cdots x_n^{\alpha_n}, \]

associate the multi-index of \(n \) non-negative integers

\[\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{N}_0^n. \]

Define the superlinear norm of \(\alpha \) as

\[|\alpha|_{sprlin} := \sum_{\substack{j=1 \\ \alpha_j \geq 2}}^{n} \alpha_j, \]

so that the superlinear multi indices are

\[S_r = \{ \alpha \in \mathbb{N}_0^n : |\alpha|_{sprlin} \leq r \}. \]

Observe that \(S_r \) has a partial ordering

\[\mu \leq \alpha \text{ means } \mu_i \leq \alpha_i. \]

Thus \(S_r \) is a lower set, meaning

\[\alpha \in S_r, \mu \leq \alpha \implies \mu \in S_r \]

Theorem (Dyn and Floater, 2013)

Fix a lower set \(L \subset \mathbb{N}_0^n \) and points \(z_\alpha \in \mathbb{R}^n \) for all \(\alpha \in L \). For any sufficiently smooth \(n \)-variate real function \(f \), there is a unique polynomial \(p \) in \(\text{span}\{x^\alpha : \alpha \in L \} \) that interpolates \(f \) at the points \(z_\alpha \), with partial derivative interpolation for repeated \(z_\alpha \).

Dyn and Floater Multivariate polynomial interpolation on lower sets, J. Approx. Th., to appear.
Partitioning and reordering the multi-indices

By a judicious choice of the interpolation points \(z_\alpha = (x_i, y_j) \), we recover the dimensionality associations of the degrees of freedom of serendipity elements.

The order 5 serendipity element, with degrees of freedom color-coded by dimensionality.

The lower set \(S_5 \), with equivalent color coding.

The lower set \(S_5 \), with domain points \(z_\alpha \) reordered.
Symmetrizing the multi-indices

By collecting the re-ordered interpolation points \(z_\alpha = (x_i, y_j) \), at midpoints of the associated face, we recover the dimensionality associations of the degrees of freedom of serendipity elements.

The lower set \(S_5 \), with domain points \(z_\alpha \) reordered.

A symmetric reordering, with multiplicity. The associated interpolant recovers values at dots, three partial derivatives at edge midpoints, and two partial derivatives at the face midpoint.
Outline

1. Introduction and Motivation
2. Approach
3. Results
4. Future Directions
Symmetry: Accommodate interior degrees of freedom that grow according to triangular numbers on square-shaped elements.
The Dyn-Floater interpolation scheme is expressed in terms of tensor product interpolation over ‘maximal blocks’ in the set using an inclusion-exclusion formula.

Put differently, the linear combination is the sum over all blocks within the lower set with coefficients determined as follows:

→ Place the coefficient calculator at the extremal block corner.
→ Add up all values appearing in the lower set.
→ The coefficient for the block is the value of the sum.

Hence: black dots → +1; white dots → -1; others → 0.
Thus, using our symmetric approach, each maximal block in the lower set becomes a standard tensor-product interpolant.
Tensor product structure: Write basis functions as linear combinations of standard tensor product functions.
3D elements

Dimensional nesting: Generalize to methods on n-cubes for any $n \geq 2$, allowing restrictions to lower-dimensional faces.
3D coefficient computation

Lower sets for superlinear polynomials in 3 variables:

Decomposition into a linear combination of tensor product interpolants works the same as in 2D, using the 3D coefficient calculator at left. (blue \rightarrow +1; orange \rightarrow -1).

Outline

1. Introduction and Motivation
2. Approach
3. Results
4. Future Directions
Future Directions

- Incorporate elements into finite element software packages.
- Analyze speed vs. accuracy trade-offs.

<table>
<thead>
<tr>
<th>$n = 2$</th>
<th>$n = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dim Q_r$</td>
<td>$\dim Q_r$</td>
</tr>
<tr>
<td>$\dim S_r$</td>
<td>$\dim S_r$</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>$r \geq 2n$</td>
<td>$r \geq 3n$</td>
</tr>
</tbody>
</table>

$r^2 + 2r + 1$ \hspace{1cm} $\frac{1}{2}(r^2 + 3r + 6)$

Expand serendipity results to generic polygons and polyhedra.
Acknowledgments

Michael Holst
National Biomedical Computation Resource
UC San Diego

Michael Floater
University of Oslo

Thanks for your attention!

Slides and pre-prints: http://math.arizona.edu/~agillette/