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What is a serendipity finite element method?
Goal: Efficient, accurate approximation of the solution to a PDE over Ω ⊂ Rn.
Standard O(hr ) tensor product finite element method in Rn:
→ Mesh Ω by n-dimensional cubes of side length h.
→ Set up a linear system involving (r + 1)n degrees of freedom (DoFs) per cube.
→ For unknown continuous solution u and computed discrete approximation uh:

||u − uh||H1(Ω)︸ ︷︷ ︸
approximation error

≤ C hr |u|Hr+1(Ω)︸ ︷︷ ︸
optimal error bound

, ∀u ∈ H r+1(Ω).

A O(hr ) serendipity FEM converges at the same rate with fewer DoFs per element:
O(h) O(h2) O(h3) O(h) O(h2) O(h3)

tensor
product

elements

serendipity
elements

Example: For O(h3), n = 3, 50% fewer DoFs→ ≈ 50% smaller linear system
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Motivations and Related Topics

Serendipity elements are an essential tool in modern efforts to robustly implement and
accelerate high order computational methods.

Isogeometric analysis: Finding basis functions suitable for
both domain description and PDE approximation avoids the
expensive computational bottleneck of re-meshing.
COTTRELL, HUGHES, BAZILEVS Isogeometric Analysis:
Toward Integration of CAD and FEA, Wiley, 2009.

Modern mathematics: Finite Element Exterior Calculus,
Discrete Exterior Calculus, Virtual Element Methods. . .
ARNOLD, AWANOU The serendipity family of finite elements,
Found. Comp. Math, 2011.
DA VEIGA, BREZZI, CANGIANI, MANZINI, RUSSO Basic
Principles of Virtual Element Methods, M3AS, 2013.

Flexible Domain Meshing: Serendipity type elements for
Voronoi meshes provide computational benefits without
need of tensor product structure.
RAND, GILLETTE, BAJAJ Quadratic Serendipity Finite
Elements on Polygons Using Generalized Barycentric
Coordinates, Mathematics of Computation, in press.
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Mathematical challenges
→ Basis functions must be constructed to implement serendipity elements.
→ Current constructions lack key mathematical properties, limiting their broader usage

Goal: Construct basis functions for serendipity elements satisfying the following:

Symmetry: Accommodate interior degrees of freedom that grow according to
triangular numbers on square-shaped elements.

Tensor product structure: Write as linear combinations of standard tensor
product functions.

Hierarchical: Generalize to methods on n-cubes for any n ≥ 2, allowing
restrictions to lower-dimensional faces.

O(h2) O(h3) O(h4) O(h5) O(h6)
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Overview of approach

O(h5)

1 Characterize and partition a set of multi-indices.

2 Reorder the set to respect serendipity degrees of freedom.

3 Symmetrize by collecting indices at face centers.

4 Apply a generic interpolation scheme for multi-indices.

→ →

1 2 3
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Two families of finite elements on cubical meshes
Qr Λ

k ([0, 1]n) −→ standard tensor product spaces (≤ degree r in each variable)
early work: RAVIART, THOMAS 1976, NEDELEC 1980
more recently: ARNOLD, BOFFI, BONIZZONI arXiv:1212.6559, 2012

Sr Λ
k ([0, 1]n) −→ serendipity finite element spaces (superlinear degree r )

early work: STRANG, FIX An analysis of the finite element method 1973
more recently: ARNOLD, AWANOU FoCM 11:3, 2011, and arXiv:1204.2595, 2012.

The superlinear degree of a polynomial ignores linearly-appearing variables.

n = 2 : {

Q3Λ0([0,1]2) (dim=16)︷ ︸︸ ︷
1, x , y , x2, y2, xy , x3, y3, x2y , xy2, x3y , xy3︸ ︷︷ ︸

S3Λ0([0,1]2) (dim=12)

, x2y2, x3y2, x2y3, x3y3}

n = 3 : {

Q3Λ0([0,1]3) (dim=64)︷ ︸︸ ︷
1, . . . , xyz, x3y , x3z, y3z, . . . , x3yz, xy3z, xyz3︸ ︷︷ ︸

S3Λ0([0,1]3) (dim=32)

, x3y2, . . . , x3y3z3}

Qr Λ
k and Sr Λ

k and have the same key mathematical properties needed for stability
(degree, inclusion, trace, subcomplex, unisolvence, commuting projections)

but for fixed k ≥ 0, r , n ≥ 2 the serendipity spaces have fewer degrees of freedom
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Superlinear polynomials form a lower set
Given a monomial xα := xα1

1 · · · x
αd
d ,

associate the multi-index of d non-negative integers α = (α1, α2, . . . , αd ) ∈ Nd
0 .

Define the superlinear norm of α as |α|sprlin :=
d∑

j=1
αj≥2

αj ,

so that the superlinear multi indices are Sr =
{
α ∈ Nd

0 : |α|sprlin ≤ r
}
.

Observe that Sr has a partial ordering µ ≤ α means µi ≤ αi .

Thus Sr is a lower set, meaning α ∈ Sr , µ ≤ α =⇒ µ ∈ Sr

We can thus apply the following recent result.

Theorem (Dyn and Floater, 2013)
Fix a lower set L ⊂ Nd

0 and points yα ∈ Rd for all α ∈ L. For any sufficiently smooth
d-variate real function f , there is a unique polynomial p ∈ span{xα : α ∈ L} that
interpolates f at the points yα, with partial derivative interpolation for repeated yα
values.

DYN AND FLOATER Multivariate polynomial interpolation on lower sets, J. Approx. Th., to appear.
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Partitioning and reordering the multi-indices

By a judicious choice of the interpolation points yα = (xi , yj ), we recover the
dimensionality associations of the degrees of freedom of serendipity elements.

The order 5 serendipity
element, with degrees of
freedom color-coded by
dimensionality.

x0 x1 x2 x3 x4 x5
y0

y1

y2

y3

y4

y5

The lower set S5, with
equivalent color coding.

x0 x2 x3 x4 x5 x1
y0

y2

y3

y4

y5

y1

The lower set S5, with
domain points yα
reordered.
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Symmetrizing the multi-indices

By collecting the re-ordered interpolation points yα = (xi , yj ), at midpoints of the
associated face, we recover the dimensionality associations of the degrees of freedom
of serendipity elements.

x0 x2 x3 x4 x5 x1
y0

y2

y3

y4

y5

y1

The lower set S5, with
domain points yα
reordered.

x0 x2, x3, x4, x5 x1
y0

y1

y5

y2,
y3,
y4,

A symmetric reordering, with multiplicity. The
associated interpolant recovers values at dots, three
partial derivatives at edge midpoints, and two partial
derivatives at the face midpoint.
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2D symmetric serendipity elements

Symmetry: Accommodate interior degrees of freedom that grow according to
triangular numbers on square-shaped elements.

O(h2) O(h3) O(h4)

O(h5) O(h6) O(h7)
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Tensor product structure

The Dyn-Floater interpolation scheme is expressed in terms of tensor product
interpolation over ‘maximal blocks’ in the set using an inclusion-exclusion formula.

→

+1

+1−1

−1

coefficient

calculator

Put differently, the linear combination is the sum over all blocks
within the lower set with coefficients determined as follows:

→ Place the coefficient calculator at the extremal block corner.
→ Add up all values appearing in the lower set.
→ The coefficient for the block is the value of the sum.

Hence: black dots→ +1; white dots→ -1; others→ 0.
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Tensor product structure

Thus, using our symmetric approach, each maximal block in the lower set becomes a
standard tensor-product interpolant.

x0 x1 x2 x3 x4 x5
y0

y1

y2

y3

y4

y5

→

x0 x2 x3 x4 x5 x1
y0

y2

y3

y4

y5

y1

→

x0 x2, x3, x4, x5 x1
y0

y1

y5

y2,
y3,
y4,
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Linear combination of tensor products

Tensor product structure: Write basis functions as linear combinations of standard
tensor product functions.

+ + +

- - - =
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3D elements

Hierarchical: Generalize to methods on n-cubes for any n ≥ 2, allowing restrictions to
lower-dimensional faces.
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3d coefficient computation

Lower sets for superlinear polynomials in 3 variables:

Decomposition into a linear combination of tensor product
interpolants works the same as in 2D, using the 3D coefficient
calculator at left. (Blue→ +1; Orange→ -1).

FLOATER, GILLETTE Nodal basis functions for the serendipity family of
finite elements, in preparation.
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Future Directions

Implement elements in finite element software packages.

Analyze speed vs. accuracy trade-offs.

1 2 3 4 5 6 7 r ≥ 2n

n = 2

dimQr 4 9 16 25 36 49 64 r 2 + 2r + 1

dimSr 4 8 12 17 23 30 38 1
2 (r 2 + 3r + 6)

n = 3

dimQr 8 27 64 125 216 343 512 r 3 + 3r 2 + 3r + 1

dimSr 8 20 32 50 74 105 144 1
6 (r 3 + 6r 2 + 29r + 24)

And finally . . .
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Future Directions

Play Qbert on lower sets of superlinear polynomials.
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