Serendipity Basis Functions for Any Degree in Any Dimension

Andrew Gillette

Department of Mathematics University of Arizona

joint work with Michael Floater (University of Oslo)

http://math.arizona.edu/~agillette/

Table of Contents

- Introduction and Motivation
- 2 Approach
- Results
- Future Directions

What is a serendipity finite element method?

Goal: Efficient, accurate approximation of the solution to a PDE over $\Omega \subset \mathbb{R}^n$.

Standard $O(h^r)$ tensor product finite element method in \mathbb{R}^n :

- \rightarrow Mesh Ω by *n*-dimensional cubes of side length h.
- \rightarrow Set up a linear system involving $(r+1)^n$ degrees of freedom (DoFs) per cube.
- \rightarrow For unknown continuous solution u and computed discrete approximation u_h :

$$\underbrace{||u-u_h||_{H^1(\Omega)}}_{\text{approximation error}} \leq \underbrace{C \, h^r \, |u|_{H^{r+1}(\Omega)}}_{\text{optimal error bound}}, \quad \forall u \in H^{r+1}(\Omega).$$

A $O(h^r)$ serendipity FEM converges at the same rate with fewer DoFs per element:

Example: For $O(h^3)$, n = 3, 50% fewer DoFs $\rightarrow \infty$ smaller linear system

Motivations and Related Topics

Serendipity elements are an essential tool in modern efforts to robustly implement and accelerate high order computational methods.

- Isogeometric analysis: Finding basis functions suitable for both domain description and PDE approximation avoids the expensive computational bottleneck of re-meshing.
 - COTTRELL, HUGHES, BAZILEVS Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, 2009.
- Modern mathematics: Finite Element Exterior Calculus, Discrete Exterior Calculus, Virtual Element Methods...
 ARNOLD, AWANOU The serendipity family of finite elements, Found. Comp. Math, 2011.
 DA VEIGA, BREZZI, CANGIANI, MANZINI, RUSSO Basic
 - DA VEIGA, BREZZI, CANGIANI, MANZINI, RUSSO Basic Principles of Virtual Element Methods, M3AS, 2013.
- Flexible Domain Meshing: Serendipity type elements for Voronoi meshes provide computational benefits without need of tensor product structure.
 - RAND, GILLETTE, BAJAJ Quadratic Serendipity Finite Elements on Polygons Using Generalized Barycentric Coordinates, Mathematics of Computation, in press.

Mathematical challenges

- ightarrow Basis functions must be constructed to implement serendipity elements.
- \rightarrow Current constructions lack key mathematical properties, limiting their broader usage

Goal: Construct basis functions for serendipity elements satisfying the following:

- **Symmetry:** Accommodate interior degrees of freedom that grow according to triangular numbers on square-shaped elements.
- Tensor product structure: Write as linear combinations of standard tensor product functions.
- Hierarchical: Generalize to methods on n-cubes for any n ≥ 2, allowing restrictions to lower-dimensional faces.

Outline

- Introduction and Motivation
- Approach
- 3 Results
- 4 Future Directions

Overview of approach

Two families of finite elements on cubical meshes

- $\mathcal{Q}_r \Lambda^k([0,1]^n) \longrightarrow \text{standard tensor product spaces} \qquad (\leq \text{degree } r \text{ in each variable})$ early work: RAVIART, THOMAS 1976, NEDELEC 1980 more recently: ARNOLD, BOFFI, BONIZZONI arXiv:1212.6559, 2012
- $S_r \Lambda^k([0,1]^n) \longrightarrow \text{serendipity finite element spaces} \qquad \text{(superlinear degree } r\text{)}$ early work: Strang, Fix An analysis of the finite element method 1973
 more recently: Arnold, Awanou FoCM 11:3, 2011, and arXiv:1204.2595, 2012.

The **superlinear** degree of a polynomial ignores linearly-appearing variables.

$$n = 2: \quad \{\underbrace{1, x, y, x^2, y^2, xy, x^3, y^3, x^2y, xy^2, x^3y, xy^3, x^2y^2, x^3y^2, x^2y^3, x^3y^3}_{\mathcal{S}_3 \Lambda^0([0,1]^2) \text{ (dim=12)}}$$

$$= 3: \quad \{\underbrace{1, x, y, x^2, y^2, xy, x^3, y^3, x^2y, xy^2, x^3y, xy^3, x^2y^2, x^3y^2, x^2y^3, x^3y^3}_{\mathcal{S}_3 \Lambda^0([0,1]^3) \text{ (dim=64)}}$$

$$= 3: \quad \{\underbrace{1, \dots, xyz, \quad x^3y, x^3z, y^3z, \dots, x^3yz, xyy^3z, xyz^3, x^3y^2, \dots, x^3y^3z^3}_{\mathcal{S}_3 \Lambda^0([0,1]^3) \text{ (dim=32)}} \}$$

 $Q_r\Lambda^k$ and $S_r\Lambda^k$ and have the **same** key mathematical properties needed for stability (degree, inclusion, trace, subcomplex, unisolvence, commuting projections) but for fixed $k \geq 0$, $r, n \geq 2$ the serendipity spaces have **fewer** degrees of freedom

Superlinear polynomials form a lower set

Given a monomial

$$\mathbf{X}^{\alpha} := \mathbf{X}_{1}^{\alpha_{1}} \cdots \mathbf{X}_{d}^{\alpha_{d}},$$

associate the multi-index of *d* non-negative integers

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \mathbb{N}_0^d$$
.

Define the superlinear norm of $\boldsymbol{\alpha}$ as

$$|\alpha|_{\mathit{sprlin}} := \sum_{\substack{j=1 \ lpha_j \geq 2}}^d lpha_j,$$

so that the superlinear multi indices are

$$S_r = \left\{ \alpha \in \mathbb{N}_0^d : |\alpha|_{\mathit{sprlin}} \leq r \right\}.$$

Observe that S_r has a partial ordering

$$\mu \leq \alpha$$
 means $\mu_i \leq \alpha_i$.

Thus S_r is a **lower set**, meaning

$$\alpha \in S_r, \, \mu \leq \alpha \implies \mu \in S_r$$

We can thus apply the following recent result.

Theorem (Dyn and Floater, 2013)

Fix a lower set $L \subset \mathbb{N}_0^d$ and points $y_\alpha \in \mathbb{R}^d$ for all $\alpha \in L$. For any sufficiently smooth d-variate real function f, there is a unique polynomial $p \in \operatorname{span}\{x^\alpha : \alpha \in L\}$ that interpolates f at the points y_α , with partial derivative interpolation for repeated y_α values.

DYN AND FLOATER Multivariate polynomial interpolation on lower sets, J. Approx. Th., to appear.

Partitioning and reordering the multi-indices

By a judicious choice of the interpolation points $y_{\alpha} = (x_i, y_j)$, we recover the dimensionality associations of the degrees of freedom of serendipity elements.

The order 5 serendipity element, with degrees of freedom color-coded by dimensionality.

The lower set S_5 , with equivalent color coding.

The lower set S_5 , with domain points y_{α} reordered.

Symmetrizing the multi-indices

By collecting the re-ordered interpolation points $y_{\alpha} = (x_i, y_j)$, at midpoints of the associated face, we recover the dimensionality associations of the degrees of freedom of serendipity elements.

The lower set S_5 , with domain points y_{α} reordered.

A symmetric reordering, with multiplicity. The associated interpolant recovers values at dots, three partial derivatives at edge midpoints, and two partial derivatives at the face midpoint.

Outline

- Introduction and Motivation
- 2 Approach
- Results
- 4 Future Directions

2D symmetric serendipity elements

Symmetry: Accommodate interior degrees of freedom that grow according to triangular numbers on square-shaped elements.

Tensor product structure

The Dyn-Floater interpolation scheme is expressed in terms of tensor product interpolation over 'maximal blocks' in the set using an inclusion-exclusion formula.

Hence: black dots \rightarrow +1; white dots \rightarrow -1; others \rightarrow 0.

Tensor product structure

Thus, using our symmetric approach, each maximal block in the lower set becomes a standard tensor-product interpolant.

Linear combination of tensor products

Tensor product structure: Write basis functions as linear combinations of standard tensor product functions.

3D elements

Hierarchical: Generalize to methods on n-cubes for any $n \ge 2$, allowing restrictions to lower-dimensional faces.

3d coefficient computation

Lower sets for superlinear polynomials in 3 variables:

Decomposition into a linear combination of tensor product interpolants works the same as in 2D, using the 3D coefficient calculator at left. (Blue \rightarrow +1; Orange \rightarrow -1).

FLOATER, GILLETTE Nodal basis functions for the serendipity family of finite elements, in preparation.

Outline

- Introduction and Motivation
- 2 Approach
- 3 Results
- Future Directions

Future Directions

- Implement elements in finite element software packages.
- Analyze speed vs. accuracy trade-offs.

	1	2	3	4	5	6	7	$r \geq 2n$
n = 2								
$\dim \mathcal{Q}_r$				25		49	64	$r^2 + 2r + 1$
$\dim \mathcal{S}_r$	4	8	12	17	23	30	38	$\frac{1}{2}(r^2+3r+6)$
n=3								
$\dim \mathcal{Q}_r$	8	27	64	125	216	343	512	$r^3 + 3r^2 + 3r + 1$
$\dim \mathcal{S}_r$	8	20	32	50	74	105	144	$\frac{1}{6}(r^3+6r^2+29r+24)$

And finally . . .

Future Directions

Play Qbert on lower sets of superlinear polynomials.

Acknowledgments

Michael Floater, University of Oslo

National Biomedical Computation Resource (UC San Diego)

Thanks to the organizers of IGA 2014 for the opportunity to speak!

Slides and pre-prints: http://math.arizona.edu/~agillette/