Conforming Vector Interpolation Functions for Polyhedral Meshes

Andrew Gillette

joint work with

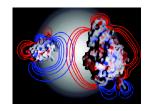
Chandrajit Bajaj and Alexander Rand

Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin, USA

http://www.math.utexas.edu/users/agillette

Interpolation in Graphics vs. Simulation

- Interpolation of vector fields required for geometric design.
- No natural constraints on interpolation properties.
- Some exploration of scalar interpolation over polyhedra.

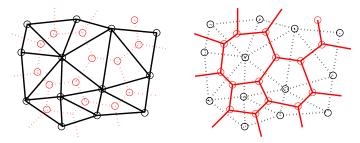


- Coupled vector fields related by integral and differential equations.
- Physical nature of problem offers natural discretizations of variables and boundary conditions.
- Discrete Exterior Calculus suggests a need for vector interpolation over polyhedra.

Goal: Develop a theory of vector interpolation over polyhedra conforming to physical requirements with provable error estimates.

Motivation

Many authors (Bossavit, Hiptmair, Shashkov, ...) have recognized the natural interplay between **primal** and **dual** domain meshes for discretization of physical equations.



Potential benefits of a theory based on interpolation over dual meshes:

- Accuracy vs. speed tradeoffs available between primal and dual methods.
- Error estimates for dual interpolation methods analogous to standard estimates.
- Validation of primal-based results with dual-based discretization methods.

Outline

Background on Vector Interpolation

- 2 Novel Discretizations Using Polyhedral Vector Interpolation
- 3 Error Estimates for Polyhedral Vector Interpolation

Outline

Background on Vector Interpolation

Novel Discretizations Using Polyhedral Vector Interpolation

3 Error Estimates for Polyhedral Vector Interpolation

H(Curl) versus H(Div)

Throughout, we will consider a model problem from magnetostatics:

- **Domain**: Contractible 3-manifold $\Omega \subset \mathbb{R}^3$ with boundary Γ
- Variables:
 - b (magnetic field / magnetic induction)
 - h (magnetizing field / auxiliary magnetic field)
- Input:
 - j (current density field)
- Equations:

$$div b = 0, \quad *b = h, \quad curl h = j$$

• **Boundary Conditions:** Γ written as a disjoint union $\Gamma^e \cup \Gamma^h$ such that $\hat{n} \cdot b = 0$ on Γ^e . $\hat{n} \times h = 0$ on Γ^h .

While b and h are both discretized as vector fields, they lie in different function spaces:

$$h \in \mathcal{H}(\mathsf{curl}\,) := \left\{ \vec{v} \in \left(L^2(\Omega) \right)^3 \quad \text{s.t.} \quad \nabla \times \vec{v} \in \left(L^2(\Omega) \right)^3 \right\}$$

$$\textit{b} \in \textit{H}(\mathsf{div}\;) := \left\{ \vec{\textit{v}} \in \left(\textit{L}^2(\Omega)\right)^3 \quad \text{s.t.} \quad \nabla \cdot \vec{\textit{v}} \in \textit{L}^2(\Omega) \right\}$$

Local Conformity Constraints

• Functional continuity can be enforced on a mesh \mathcal{T} by imposing certain constraints at each face $F = T_1 \cap T_2$, involving the normals to the mesh elements T_1, T_2 :

$$\begin{split} & \textit{H}(\text{curl }) := \left\{ \vec{v} \in \left(\textit{L}^2(\Omega) \right)^3 \quad \text{s.t.} \quad \nabla \times \vec{v} \in \left(\textit{L}^2(\Omega) \right)^3 \right\} \\ & \textit{h} \in \textit{H}(\text{curl }) \Longleftrightarrow \textit{h}|_{\mathcal{T}_1} \times \hat{\textit{n}}_1 + \textit{h}|_{\mathcal{T}_2} \times \hat{\textit{n}}_2 = 0, \quad \forall \textit{F} \in \mathcal{T} \end{split}$$

$$\begin{split} & \textit{H}(\text{div }) := \left\{ \vec{v} \in \left(\textit{L}^2(\Omega) \right)^3 \quad \text{s.t.} \quad \nabla \cdot \vec{v} \in \textit{L}^2(\Omega) \right\} \\ & \textit{b} \in \textit{H}(\text{div }) \Longleftrightarrow \textit{b}|_{\mathcal{T}_1} \cdot \hat{\textit{n}}_1 + \textit{b}|_{\mathcal{T}_2} \cdot \hat{\textit{n}}_2 = 0, \quad \forall \textit{F} \in \mathcal{T} \end{split}$$

- These constraints hold for primal meshes (T_i =tetrahedra) **and** dual meshes (T_i =polyhedra).
- **Goal**: Solve for h and b as functions defined piecewise over T, guaranteed to satisfy the applicable conformity constraints.

Whitney Elements for Primal Meshes

- The Whitney elements provide a simple and canonical way to construct piecewise functions over a **primal** mesh \mathcal{T} in $\mathcal{H}(\text{curl })$ or $\mathcal{H}(\text{div })$:
- Start with linear barycentric coordinates:

$$\lambda_i(\mathbf{v}_j) = \delta_{ij}$$

Define for each edge v_iv_i::

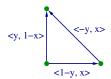
$$\eta_{ij} := \lambda_i \nabla \lambda_i - \lambda_j \nabla \lambda_i$$

2 Define for each face $\mathbf{v}_i \mathbf{v}_i \mathbf{v}_k$:

$$\eta_{ijk} := \lambda_i \nabla \lambda_j \times \nabla \lambda_k + \lambda_j \nabla \lambda_k \times \nabla \lambda_i$$

$$+ \lambda_k \nabla \lambda_i \times \nabla \lambda_j$$

 $\lambda_i \rightarrow 1$ d.o.f. per vertex

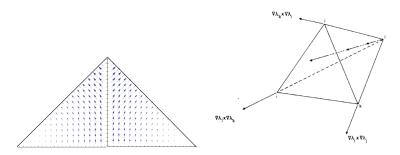


 $\eta_{ij}
ightarrow 1$ d.o.f. per edge

$$<-x,-y,1-z>,< x,y-1,z> \ <1-x,-y,-z>,< x,y,z> \ \eta_{ijk} o 1 ext{ d.o.f. per face}$$

Whitney Elements for Primal Meshes

In 3D, it can be shown that the η_{ij} satisfy the H(curl) constraints and the η_{ijk} satisfy the H(div) constraints.



See, e.g. Bossavit Computational Electromagnetism, 1998.

Discrete deRham Diagrams

We now have a basis for finite dimensional subspaces of the deRham Diagram:

$$H^1 \xrightarrow{d_0} H(\text{curl}) \xrightarrow{-d_1} H(\text{div}) \xrightarrow{d_2} L^2$$

$$\{\lambda_i\} \xrightarrow{\mathbb{D}_0} \{\eta_{ij}\} \xrightarrow{\mathbb{D}_1} \{\eta_{jik}\} \xrightarrow{\mathbb{D}_2} \{\chi_{\mathcal{T}}\}$$

These are called the primal cochain spaces in Discrete Exterior Calculus:

$$\mathcal{C}^0 \xrightarrow{\mathbb{D}_0} \mathcal{C}^1 \xrightarrow{\mathbb{D}_1} \mathcal{C}^2 \xrightarrow{\mathbb{D}_2} \mathcal{C}^3$$
(grad) (curl)

 Supposing for a moment we can construct conforming interpolation functions on the dual mesh, we also have a sequence of dual cochain spaces:

$$\overline{\mathcal{C}}^3 \xleftarrow{\mathbb{D}_0^T} \overline{\mathcal{C}}^2 \xleftarrow{\mathbb{D}_1^T} \overline{\mathcal{C}}^1 \xleftarrow{\mathbb{D}_2^T} \overline{\mathcal{C}}^0$$

DESBRUN, HIRANI, LEOK, MARSDEN Discrete Exterior Calculus, arXiv:math/0508341v2 [math.DG], 2005

Discrete Exterior Derivative

lacktriangle The discrete exterior derivative $\mathbb D$ is the transpose of the boundary operator.

$$\begin{bmatrix} 1 \\ 2 \\ 4 \\ 7 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 \\ -3 \\ 2 \\ 5 \\ 3 \end{bmatrix}$$

$$\downarrow 0 \\ \hline 5 \times 4 \text{ matrix} \\ \text{with entries} \\ 0, \pm 1 \\ \hline \end{bmatrix}$$

• The discrete exterior derivative on the **dual** mesh is \mathbb{D}^T

These cochain vectors and derivative matrices are the building blocks for equation discretization.

Outline

Background on Vector Interpolation

2 Novel Discretizations Using Polyhedral Vector Interpolation

3 Error Estimates for Polyhedral Vector Interpolation

Discrete Magnetostatics - Primal

Returning to the magnetostatics problem, we can discretize the equations in two ways:

Continuous Equations:

$$\operatorname{div} b = 0$$
, $*b = h$, $\operatorname{curl} h = j$

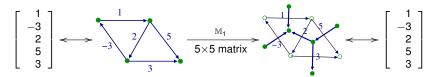
• 'Primal' Discrete Equations, with b as a primal 2-cochain:

$$\mathbb{D}_2 \mathsf{B} = \mathsf{0}, \quad \mathbb{M}_2 \mathsf{B} = \overline{\mathsf{H}}, \quad \mathbb{D}_1^T \overline{\mathsf{H}} = \overline{\mathsf{J}}.$$

• 'Dual' Discrete Equations, with b as a dual 2-cochain:

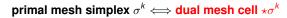
$$\mathbb{D}_0^T\overline{B}=0,\quad \mathbb{M}_1^{-1}\overline{B}=H,\quad \mathbb{D}_1H=J.$$

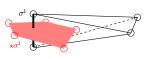
The discrete Hodge Star $\mathbb M$ transfers information between complementary dimensions on **dual** meshes. In this example, we use the identity matrix for $\mathbb M_1$.

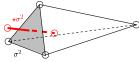


Discrete Hodge Stars

- Discretization of the Hodge star operator is non-canonical.
- Existing inverse discrete Hodge stars are either too full or too empty for use in discretizations on dual meshes
- We present a novel dual discrete Hodge star for this purpose using polyhedral vector interpolation functions







	9 0	0 0		
type	reference	definition	\mathbb{M}_k	\mathbb{M}_k^{-1}
DIAGONAL	[Desbrun et al.]	$(\mathbb{M}_k^{ extit{ iny Diag}})_{ij} := rac{ \star \sigma_i^k }{ \sigma_j^k } \delta_{ij}$	diagonal	diagonal
WHITNEY	[Dodziuk],[Bell]	$(\mathbb{M}_k^{\mathit{Whit}})_{ij} := \int_{\mathcal{T}} \eta_{\sigma_i^k} \cdot \eta_{\sigma_j^k}$	sparse	(full)

DUAL

[G, Bajaj]

 $((\mathbb{M}_k^{ extit{Dual}})^{-1})_{ij} := \int_{\mathcal{T}} \eta_{\star \sigma_i^k} \cdot \eta_{\star \sigma_j^k}$

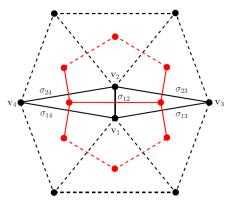
(full)

sparse

Condition Number of Discrete Hodge Stars

Theorem [G, Bajaj]

The condition number of $(\mathbb{M}_k^{Dual})^{-1}$ is governed by different mesh criteria than the condition number of \mathbb{M}_k^{Diag} and \mathbb{M}_k^{Whit} .



$$\mathbf{v}_1 = (0,0)$$
 $\mathbf{v}_3 = (P, \frac{1}{2})$ $\mathbf{v}_2 = (0,1)$ $\mathbf{v}_4 = (-P, \frac{1}{2})$

Condition numbers as functions of P:

Р	$\mathbb{M}_1^{ extit{Diag}}$	$\mathbb{M}_1^{\mathit{Whit}}$	$\left(\mathbb{M}_1^{ extit{Dual}} ight)^{-1}$
2	6.3	3.2	1.5
5	17.2	9.9	1.3
10	34.6	21.6	1.4
order	O(P)	O(P)	<i>O</i> (1)

Dual Formulations of Mixed Finite Element Methods. Submitted, 2010.

Dual-based Linear Systems

Independence of primal and dual discrete Hodge stars implies **accuracy vs. speed** tradeoffs are possible between primal and dual methods.

Ex: Fewer elements in dual mesh \rightarrow smaller system \rightarrow faster.

Ex: Better condition number in dual system \rightarrow more accurate.

• 'Primal' Linear System, with b as a primal 2-cochain:

$$\begin{split} \mathbb{D}_2 \mathsf{B} &= \mathsf{0}, \quad \mathbb{M}_2 \mathsf{B} = \overline{\mathsf{H}}, \quad \mathbb{D}_1^T \overline{\mathsf{H}} = \overline{\mathsf{J}}. \\ \left(\begin{array}{cc} -\mathbb{M}_2 & \mathbb{D}_2^T \\ \mathbb{D}_2 & \mathsf{0} \end{array} \right) \left(\begin{array}{c} \mathsf{B} \\ \overline{\mathsf{P}} \end{array} \right) &= \left(\begin{array}{c} -\overline{\mathsf{H}}_0 \\ \mathsf{0} \end{array} \right). \end{aligned}$$

Here, $\overline{\mathbb{H}}_0 \in \overline{\mathcal{C}}^1$ satisfies $\mathbb{D}_1^T \overline{\mathbb{H}}_0 = \overline{J}$ and $\overline{\mathbb{H}}$ is defined by $\overline{\mathbb{H}} := \overline{\mathbb{H}}_0 + \mathbb{D}_2^T \overline{\mathbb{P}}$. Thus $\mathbb{D}_1^T \overline{\mathbb{H}} = \mathbb{D}_1^T (\overline{\mathbb{H}}_0 + \mathbb{D}_2^T \overline{\mathbb{P}}) = \overline{J}$ is assured.

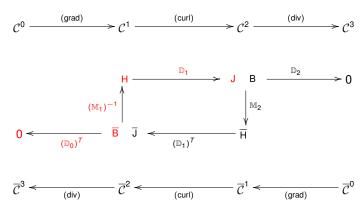
• 'Dual' Linear System, with b as a dual 2-cochain:

$$\begin{split} \mathbb{D}_0^T \overline{B} &= 0, \quad \mathbb{M}_1^{-1} \overline{B} = H, \quad \mathbb{D}_1 H = J. \\ \left(\begin{array}{cc} -\mathbb{M}_1^{-1} & \mathbb{D}_0 \\ \mathbb{D}_0^T & 0 \end{array} \right) \left(\begin{array}{c} \overline{B} \\ P \end{array} \right) &= \left(\begin{array}{c} -H_0 \\ 0 \end{array} \right). \end{split}$$

Here, $H_0 \in \mathcal{C}^1$ satisfies $\mathbb{D}_1 H_0 = J$ and H is defined by $H := \mathbb{M}_1^{-1} \overline{B}$. Thus $\mathbb{D}_1 H = \mathbb{D}_1 (H_0 + \mathbb{D}_0 P) = J$ is assured.

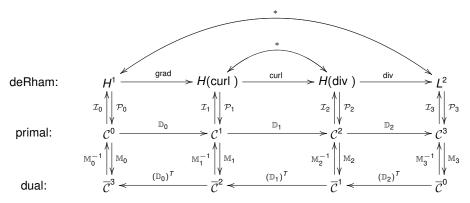
Dual-based Linear Systems

The duality of the systems is easily visualized via the cochain sequences:



The DEC-deRham Diagram for \mathbb{R}^3

We combine the Discrete Exterior Calculus maps with the L^2 deRham sequence.



The combined diagram can be used to formulate dual-based discretizations for many problems including electromagnetics, Darcy flow, and electrodiffusion.

The question remains: How do we construct polyhedral vector interpolation functions?

Outline

Background on Vector Interpolation

- Novel Discretizations Using Polyhedral Vector Interpolation
- 3 Error Estimates for Polyhedral Vector Interpolation

Scalar Interpolation: Generalized Barycentric Functions

Let Ω be a convex polygon in \mathbb{R}^2 with vertices $\mathbf{v}_1, \dots, \mathbf{v}_n$. Functions $\lambda_i : \Omega \to \mathbb{R}$, $i = 1, \dots, n$ are called **barycentric coordinates** on Ω if they satisfy two properties:

- **1** Non-negative: $\lambda_i \geq 0$ on Ω .
- **2** Linear Completeness: For any linear function $L: \Omega \to \mathbb{R}, L = \sum_{i=1}^{n} L(\mathbf{v}_i)\lambda_i$.

It can be shown that any set of barycentric coordinates under this definition also satisfy:

- **3** Partition of unity: $\sum_{i=1}^{n} \lambda_i \equiv 1$.
- 4 Linear precision: $\sum_{i=1}^{n} \mathbf{v}_{i} \lambda_{i}(\mathbf{x}) = \mathbf{x}$.
- **1** Interpolation: $\lambda_i(\mathbf{v}_j) = \delta_{ij}$.

Theorem [Warren, 2003]

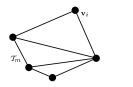
If the λ_i are rational functions of degree n-2, then they are unique.

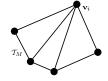
Triangulation Coordinates

Let \mathcal{T} be a triangulation of Ω formed by adding edges between the \mathbf{v}_j in some fashion. Define

$$\lambda_{i,\mathcal{T}}^{Tri}:\Omega o\mathbb{R}$$

to be the barycentric function associated to \mathbf{v}_i on triangles in \mathcal{T} containing \mathbf{v}_i and identically 0 otherwise. Trivially, these are barycentric coordinates on Ω .





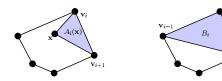
Theorem [Floater, Hormann, Kós, 2006]

For a fixed i, let \mathcal{T}_m denote any triangulation with an edge between \mathbf{v}_{i-1} and \mathbf{v}_{i+1} . Let \mathcal{T}_M denote the triangulation formed by connecting \mathbf{v}_i to all the other \mathbf{v}_j . Any barycentric coordinate function λ_i satisfies the bounds

$$0 \le \lambda_{i,\mathcal{T}_m}^{\text{Tri}}(\mathbf{x}) \le \lambda_i(\mathbf{x}) \le \lambda_{i,\mathcal{T}_M}^{\text{Tri}}(\mathbf{x}) \le 1, \quad \forall \mathbf{x} \in \Omega.$$
 (1)

Wachspress Coordinates

Let $\mathbf{x} \in \Omega$ and define $A_i(\mathbf{x})$ and B_i as the areas shown.



Define the Wachspress weight function as

$$\mathbf{\textit{w}}_{\textit{i}}^{\mathrm{Wach}}(\mathbf{x}) = \textit{B}_{\textit{i}} \prod_{j \neq \textit{i}, \textit{i}-1} \textit{A}_{\textit{j}}(\mathbf{x}).$$

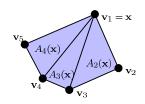
The Wachspress coordinates are then given by the rational functions

$$\lambda_i^{\text{Wach}}(\mathbf{x}) = \frac{w_i^{\text{Wach}}(\mathbf{x})}{\sum_{i=1}^n w_i^{\text{Wach}}(\mathbf{x})}$$
(2)

Wachspress Coordinates Example

Let $\mathbf{x} = \mathbf{v}_1$.

Note
$$A_1(\mathbf{x}) = \text{area of } (\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2) = 0$$
. Similarly $A_5(\mathbf{x}) = 0$



$$w_1^{\text{Wach}}(\mathbf{x}) = B_1 A_2(\mathbf{x}) A_3(\mathbf{x}) A_4(\mathbf{x}) = W$$

$$w_2^{\text{Wach}}(\mathbf{x}) = B_2 A_3(\mathbf{x}) A_4(\mathbf{x}) A_5(\mathbf{x}) = 0$$

$$w_3^{\text{Wach}}(\mathbf{x}) = B_3 A_4(\mathbf{x}) A_5(\mathbf{x}) A_1(\mathbf{x}) = 0$$

$$w_4^{\text{Wach}}(\mathbf{x}) = B_4 A_5(\mathbf{x}) A_1(\mathbf{x}) A_2(\mathbf{x}) = 0$$

$$w_5^{\text{Wach}}(\mathbf{x}) = B_5 A_1(\mathbf{x}) A_2(\mathbf{x}) A_3(\mathbf{x}) = 0$$

$$\lambda_1^{\text{Wach}}(\mathbf{x}) = \frac{w_1^{\text{Wach}}(\mathbf{x})}{\sum w_i^{\text{Wach}}(\mathbf{x})} = \frac{W}{W} = 1$$

$$\lambda_2^{\text{Wach}}(\mathbf{x}) = \frac{w_2^{\text{Wach}}(\mathbf{x})}{\sum w_i^{\text{Wach}}(\mathbf{x})} = 0$$

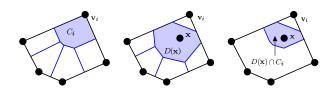
$$\lambda_2^{\text{Wach}}(\mathbf{x}) = \frac{w_2^{\text{Wach}}(\mathbf{x})}{\sum w_1^{\text{Wach}}(\mathbf{x})} = 0$$

Similarly $\lambda_3^{\text{Wach}}(\mathbf{x}) = \lambda_4^{\text{Wach}}(\mathbf{x}) = \lambda_5^{\text{Wach}}(\mathbf{x}) = 0.$

This is an illustration of the property $\lambda_i^{\mathrm{Wach}}(\mathbf{v}_i) = \delta_{ij}$

Sibson (Natural Neighbor) Coordinates

Let P denote the set of vertices $\{\mathbf{v}_i\}$ and define $P' = P \cup \{\mathbf{x}\}$.



$$C_i := |V_P(\mathbf{v}_i)| = |\{\mathbf{y} \in \Omega : |\mathbf{y} - \mathbf{v}_i| < |\mathbf{y} - \mathbf{v}_j| , \forall j \neq i\}|$$

= area of cell for \mathbf{v}_i in Voronoi diagram on the points of P ,

$$\begin{array}{lcl} D(\mathbf{x}) & := & |V_{P'}(\mathbf{x})| & = & |\{\mathbf{y} \in \Omega : |\mathbf{y} - \mathbf{x}| < |\mathbf{y} - \mathbf{v}_i| \ , \ \forall i\}| \\ & = & \text{area of cell for } \mathbf{x} \text{ in Voronoi diagram on the points of } P'. \end{array}$$

By a slight abuse of notation, we also define

$$D(\mathbf{x}) \cap C_i := |V_{P'}(\mathbf{x}) \cap V_P(\mathbf{v}_i)|.$$

The Sibson coordinates are defined to be

$$\lambda_i^{ ext{Sibs}}(\mathbf{x}) := rac{D(\mathbf{x}) \cap C_i}{D(\mathbf{x})} \qquad ext{ or, equivalently, } \qquad \lambda_i^{ ext{Sibs}}(\mathbf{x}) = rac{D(\mathbf{x}) \cap C_i}{\sum_{j=1}^n D_j(\mathbf{x}) \cap C_j}.$$

Optimal Coordinates

Let $g_i:\partial\Omega\to\mathbb{R}$ be the piecewise linear function satisfying

$$g_i(\mathbf{v}_j) = \delta_{ij}, \quad g_i \text{ linear on each edge of } \Omega.$$

The optimal coordinate function λ_i^{Opt} is defined to be the solution of Laplace's equations with g_i as boundary data,

$$\begin{cases}
\Delta \left(\lambda_i^{\text{Opt}} \right) = 0, & \text{on } \Omega, \\
\lambda_i^{\text{Opt}} = g_i, & \text{on } \partial \Omega.
\end{cases}$$
(3)

These coordinates are optimal in the sense that they minimize the norm of the gradient over all functions satisfying the boundary conditions,

$$\lambda_i^{\mathrm{Opt}} = \operatorname{argmin} \left\{ |\lambda|_{H^1(\Omega)} : \lambda = g_i \, \mathrm{on} \, \, \partial \Omega \right\}.$$

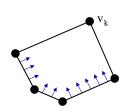
Polyhedral H(Curl) Vector Interpolantion

- Let $\{\overline{\lambda}_i\}$ denote a set of generalized barycentric coordinates for a polygon (2D) or polyhedra (3D).
- Define for each edge v_iv_j::

$$\overline{\eta}_{ij} := \overline{\lambda}_i \nabla \overline{\lambda}_j - \overline{\lambda}_j \nabla \overline{\lambda}_i$$

Theorem [G,Bajaj]

Constructing **Whitney-like 1-forms** analogously to the triangular case produces globally H(curl)-conforming **vector fields**.



PROOF: Consider edge $\mathbf{v}_i\mathbf{v}_j$ and λ_k associated to a different vertex \mathbf{v}_k . Then the edge is part of the zero level set of λ_k . Hence $\nabla \lambda_k$ must be perpendicular to the edge at all points along it and any summand $\lambda_i \nabla \lambda_k$ has no tangential component on the edge. Therefore, the tangential components only depend on λ_i and λ_j . Hence the H(curl) conformity constraints are satisfied.

To decide which definition of $\{\overline{\lambda}_i\}$ is suitable, we need error estimates.

Error Estimates: 2D Scalar Case

The **optimal convergence estimate** for a finite element method bounds the interpolation error in H^1 -norm of an unknown function u by a constant multiple of the mesh size times the H^2 semi-norm of u:

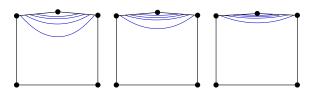
$$||u - \overline{\mathcal{I}}_0 u||_{H^1(\Omega)} \le C \operatorname{diam}(\Omega) |u|_{H^2(\Omega)}, \quad \forall u \in H^2(\Omega).$$
 (4)

(Note that $\overline{\mathcal{I}}_0 u$ assumes u is known or computed at vertices of the dual mesh.)

Theorem [G, Rand, Bajaj]

Assume certain standard geometric quality conditions on the dual mesh can be guaranteed. Then a **dual formulation** of a finite element method using any of the coordinate systems has the **optimal convergence estimate** on the mesh.

Error Estimates for Generalized Barycentric Interpolation. Submitted, 2010.



Example showing necessity of geometric criteria for Wachspress coordinates.

Future Work

- Efficient computation of $\overline{\lambda}_i$ basis functions
- Error estimates for polyhedral vector functions
- H(div)-conforming vector elements for polyhedral meshes

Questions?

- Thank you for inviting me to visit.
- Slides and pre-prints available at http://www.math.utexas.edu/users/agillette