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The ‘Periodic Table of the Finite Elements’

ARNOLD, LOGG, “Periodic table of the finite elements,” SIAM News, 2014.
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Classification of many common conforming finite element types.

n — Domains in R? (top half) and in R® (bottom half)
r — Order 1,2, 3 of error decay (going down columns)
k — Conformity type k =0, ..., n(going across a row)

Geometry types: Simplices (left half) and cubes (right half).
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Classification of conforming methods

Conforming finite element method types can be broadly classified by three integers:

n — the spatial dimension of the domain
r — the order of error decay

k — the differential form order of the solution space

Ex: Q; A%(0s) is an element for

n=3 — domainsinR?

=~ 6 r=1 — linear order of error decay
i k=2 — conformity in A*(R%) ~ H(div)
O, A*(0s) is part of the Q™ ‘column’ of elements,
Nei el is defined on geometry s (i.e. a cube),
i has a 6 dimensional space of test functions,

and has an associated set of 6 degrees of freedom
that are unisolvent for the test function space.
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An abbreviated reading list (50 years of theory!)

RAVIART, THOMAS, “A mixed finite element method for 2nd order elliptic problems” Lecture Notes
in Mathematics, 1977 « 3172 citations, including 150 from 2017!

NEDELEC, “Mixed finite elements in R3,” Numerische Mathematik, 1980

BREZzzI, DOUGLAS JR., MARINI, “Two families of mixed finite elements for second order elliptic
problems,” Numerische Mathematik, 1985

NEDELEC, “A new family of mixed finite elements in R3,” Numerische Mathematik, 1986

ARNOLD, FALK, WINTHER “Finite element exterior calculus, homological techniques, and
applications,” Acta Numerica, 2006

CHRISTIANSEN, “Stability of Hodge decompositions in finite element spaces of differential forms
in arbitrary dimension,” Numerische Mathematik, 2007

ARNOLD, FALK, WINTHER “Finite element exterior calculus: from Hodge theory to numerical
stability,” Bulletin of the AMS, 2010

ARNOLD, AWANOU “The serendipity family of finite elements ”, Found. Comp Math, 2011
ARNOLD, AWANOU “Finite element differential forms on cubical meshes”, Math Comp., 2013

ARNOLD, BOFFI, BONIZzONI “Finite element differential forms on curvillinear meshes and their
approximation properties,” Numerische Mathematik, 2014
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H(div) / L? mixed form of Poisson problem

Derivation of a mixed method for the Poisson problem on a domain Q ¢ R3:
Given f : Q — R, find a function p € H?(Q) such that

Ap+f = 0, inQ, +B.C’s
Writing this as a first order system: find u € H(div) and p € L3(Q) such that
dvu+f = 0, in Q,
u—gradp = 0, in Q,
(02 conditions) = 0
A weak form of these equations: find u € H(div) and p € L3(Q) such that
(divu,w) + (f,w) = 0, vV wel? = AN(Q)
(u,v) + (p,divv) = 0, V veHdv) = A(Q)
ie. v, divveL(Q) differential
form notation
A conforming mixed finite element method: find u, € A2 and p € A3 such that
(div up,wp) + (f,wn) = 0 Y wh €A} C L3(Q)
(un, V) + (pn,divvy) = [0Qterms] Vv, e A2 C H(div)

(022 conditions) 0
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A conforming mixed method for Darcy Flow

Movement of a fluid through porous media modeled via Darcy flow:

Given f and g, find pressure p and velocity u such that:

u+Kvp = 0 in Q,
dvu—-f = 0 in Q,
p =g on 99,
where K is a symmetric, uniformly positive definite tensor for W
viscosity

A weak form of these equations: find u € H(div) and p € L3(Q) such that
(K~ 'u,v) — (p,div v) [0Qterms] Vv e H(div)
(div u, w) — (f,w) 0 Vwe L3(Q)
(02 conditions) = O

A conforming mixed finite element method: find u, € A2 and p € A3 such that
(K~ up, V) — (pn, div vp) [0Qterms] Vv, e A2 C H(div)
(div up, wy) — (f, wp) 0 Y owh €A} C L[3(Q)
(092 conditions) 0

ARBOGAST, PENCHEVA, WHEELER, YOTOV “A Mult|scale Mortar Mixed Finite Element Method”
Multiscale Modeling and Simufation (SIAM) 6:1, 2007.
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Stable pairs of finite element spaces

(up, vu) + (pn, div vp) [0Qterms] Vv,e A2 C H(div)
(div up, wy) + (f, wh) 0 Yw, €N CL3Q)

Given a selection for the finite element spaces (A2, A3),
the method is said to be stable if the error in the computed solution (u, pr) is
within a constant multiple C of the minimal possible error. That is:

[lu— uh||H(div) +llp— ph||L2 <C ( inf2 |lu— WHH(div) + infs llp— CI|L2> (*)
WEN} qeny

Brezzi’'s theorem establishes the following sufficient criteria for (x):
(w,w) > c|w|fy,, VYwezZ,:= { weAi : (divw,q) =0, VgeA; } ,

divw,
sup VW9 5 oigl., Ve
wen? ||WHH(div)

If the pair (A2, A3) satisfies these two criteria it is called a stable pair.

BREZzzI, “On the existence, uniqueness and approximation of saddle-point problems arising
from Lagrangian multipliers,” RAIRO, 1974.
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The importance of method selection

Vector Poisson problem
@ Solutions by the standard non-mixed
method (left) and by a mixed method
(right).
@ Only the second choice shows the
correct behavior near the reentrant
corner.

ooxzs Poisson problem

@ Solutions by two different choices for
the finite element solution spaces in a

mixed method.
4 ] . .
T e T @ Only the second choice looks like the
VNN .
Vit true solution: x(1 — x)y(1 — y).

Examples and images borrowed from:

ARNOLD, FALK, WINTHER “Finite Element Exterior Calculus: From Hodge Theory to Numerical
Stability,” Bulletin of the AMS, 47:2, 2010.
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Stable pairs of elements for mixed methods

Picking elements from the table for a mixed method for the Poisson problem:

A BA

025

= Unstable method

P, PiA(s) dP, PiR()

C H'x H' cl?

s ; m

; 4 A 4 Provably stable method
T . e B a2 converges to
X P8 -3 1x; =1 \Vaval i 14

e — u=x(1-x)y(1-y)

C H(div) clL?

Example and images on right from:

ARNOLD, FALK, WINTHER “Finite Element Exterior Calculus. ..” Bulletin of the AMS, 47:2, 2010.
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Method selection and cochain complexes
V. '
VA A

Provably stable method

locarz

converges to

RT{/ PLA(4) dP, PiA(4) ey,
3 PAB) 3 1 P =1 \VAYAYA"d V122 _
' - u=x(1-x)y(1-y)
L
; 2
C H(div) cL

Stable pairs of elements for mixed Hodge-Laplacian problems are found by choosing
consecutive spaces in compatible discretizations of the 2 deRham Diagram.

H' —Y > H(curl) ——> H(div) ———> [?
grad curl div
vector Poisson o L
Maxwell’s egn’s h b
Darcy / Poisson u p
Stable pairs are found from consecutive entries in a cochain complex. )
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Exact cochain complexes found in the table

Two kinds of families of cochain complexes on an tetrahedron in R3:
PN PrAY 5P A2 5 PAY “trimmed’ polynomials

PN — P N =P, — P, gA® polynomials
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Exact cochain complexes found in the table

On an n-simplex in R":
PN PN oo 5PN S PIA" “trimmed’ polynomials
PA =P N = oo 5 PN = P A polynomials
On an n-dimensional cube in R":
0N O AN = 0 S OFATTT S O A tensor product

SN =58 N= oo 58 AT S A" serendipity

The ‘minus’ spaces proceed across rows of the
s PToFE (r is fixed) while the ‘regular’ spaces
N ﬁ proceed along diagonals (r decreases)

mixed methods from the P, spaces is smaller
than those from the P, spaces, while the
opposite is true for the Q, and S; spaces.

. 7 E Mysteriously, the degree of freedom count for

Andrew Gillette - U. Arizona (Trimmed) Serendipity Elements LSU Seminar - Nov 2018 14/42



e How to find new finite elements by counting
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Counting boundary and interior DoFs of P, A

faces, edges, and, vertices 4 6 4 0
interior 0 0 0 1
total 4 6 4 1

Py, N(Asz) | Py N'(As)
faces, edges, and, vertices 10 20
interior 0 0
total 10 20
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Identifying an alternating sum pattern

+ sum
boundary 2
interior -1
total 1

Py N(Az) | Py A (As) [ Py A2(As) | Py A%(As) || +sum
boundary 10 20 12 0 2
interior 0 0 3 4 -1
total 10 20 15 4 1
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e ;7 i -
o g
O N (Ts) | QA (Ts) | Q7 A%(Os) | O A3(Ts) || + sum
boundary 8 12 6 0 2
interior 0 0 0 1 -1
total 8 12 6 1 1
Oéz’ -
9, N°(Os) + sum
boundary 26 2
interior 1 -1
total 27 1

Andrew Gillette - U. Arizona

(Trimmed) Serendipity Elements

LSU Seminar -

Nov 2018

Counting DoFs of Q; A

18/42




Predicting DoFs of S; Ak

How big would a “minimal dimension” cochain complex on cubes be?

Expect to recover Q; A¥ in lowest order case:

S, N (0s) | S;AT(Ds) | S;A%(0s) | S;A3(Ts) || £ sum
boundary 8 12 6 0 2
interior 0 0 0 1 -1
total 8 12 6 1 1

For r > 1, we must have a constant multiple of DoFs per edge or face,
and we have expected dimensions (by other reasoning) for S{/\O and S;A3:

Sy A°(0s) S, N'(Ds) S; N(Os) | S, A(0s) || +sum
boundary 20 12e1 + 6f 6f 0 2
interior 0 i i 4 -1
total 20 12ey +6f; + s 6h + b 4 1

Also expect e; = 2 since this would augment the DoFs per edge by 1 from r = 1 case.
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12

Actual DoFs of STAX (r =1,2)

S, N (s) | S;AT(Ds) | S;A%(0s) | S;A3(Ts) || £ sum
boundary 8 12 6 0 2
interior 0 0 0 1 -1
total 8 12 6 1 1

20 - 36 21 4

S; N(0s) | S; AT(Os) | S, A%(Ds) | S, A3(Os) || + sum
boundary 20 36 18 0 2
interior 0 0 3 4 -1
total 20 36 21 4 1
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20

. 36

Actual DoFs of S-AX (r = 2,3)

21

+3

S, N(0s) | S, A"(Ds) | S, A%(0s) | S; A3(0s) || £ sum
boundary 20 36 18 0 2
interior 0 0 3 4 -1
total 20 36 21 4 1

X .. 32 . 66 . . 45 10

S; N°(0s) | S;AT(Ds) | S; A%(Os) | Sy A3(0s) || £ sum
boundary 32 66 36 0 2
interior 0 0 9 10 -1
total 32 66 45 10 1
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© Trimmed serendipity finite elements
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The 5th column: Trimmed serendipity spaces

A new column for the PToFE:
the trimmed serendipity elements.

S; A¥(O,) | denotes
approximation order r,
subset of k-form space A*(Q),
use on meshes of n-dim’l cubes.

Defined foranyn>1,0< k<n,r>1

Identical or analogous properties to all the
other colummns in the table.

The advantage of the S;” A¥ spaces is that
they have fewer degrees of freedom for mixed
methods than their tensor product and
serendipity counterparts.
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The polynomial space of S; A

S;A%(O,) is a space of differential k-forms whose coefficients are polynomials in R”.
ST =P N @ TN @ dT N

Polynomial coefficients in each summand:

P AKX anything up to degree r — 1 and some degree r
JN¥ . certain polynomials whose degree is between r+1 and r+n—k—1
d 7N~ . certain polynomials whose degree is between r and r+n—k—2

The “regular” serendipity space has an analogous decomposition:
SN = PN @ TN B d T N

This decomposition provides a direct sum into some precise but elaborate subspaces:
TNRY) = 3oy Hrr1 N (R,

where  H, A*(R"):= {w e HA(R")|Idegw > 1},

where Ideg(x“dx.) : #lieo" : ai=1}
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The degrees of freedom of S AX

The degrees of freedom associated to a d-dimensional sub-face f of an
n-dimensional cube O, are (for any k < d < min{n, | r/2]| + k}):

u— /(tl’/ uyng, gqe Prfz(d,k)q/\dik(f) 52 d'Hr—2(d—k)+1/\dik71(f)a
f

These degrees of freedom are unisolvent for S, A¥(Cp).

The direct sum decomposition of the indexing space gives one way to count the
dimension precisely:

Proar AN ® dHr_a@iy 1A (F)

indexing space for S,_ 1 AK(f) subspace of H,_p(g_xyA? ¥ (1)
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Dimension count and comparison

Formula for counting degrees of freedom of S AK(Cp):
_ —d+2k -1 —d+ k-1 —d+2k —d+ k-1
2" d@)((rr—dikq)(r gk )r( k+ [P >)

k| r=1 2 3 4 5 6 7

min{n,|r/2]+k}

d=k

n=2 0 4 8 12 17 23 30 38
4 10 17 26 37 50 65
10 15 21 28

N —
—
w
[e)]

n=3 0 8 20 32 50 74 105 144
1 12 36 66 111 173 255 360
2 6 21 45 82 135 207 301
3 1 4 10 20 35 56 84
n=4 16 48 80 136 216 328 480

32 112 216 392 656 1036 1563
24 96 216 422 746 1227 1910
8 36 94 200 375 644 1036
1 5 15 35 70 126 210

A WN—=2O

Andrew Gillette - U. Arizona (Trimmed) Serendipity Elements LSU Seminar - Nov 2018 26 /42



Key properties of the trimmed serendipity spaces

O O A = s SO AT S oA tensor product
SN =S N = o S N 5 SN serendipity
SN SN = s SN S SN trimmed serendipity

Subcomplex: dS;7AF ¢ §7 A

Exactness: The above sequence is exact.
i.e. the image of incoming map = kernel of outgoing map

Inclusion:  S,AF C S A" C SN
Trace: tr;S; A(R") C S, A%(f), forany (n— 1)-hyperplane f in R”
Special cases: S, A =S, A°

SN =8, 1A\"
SN+ dS N = SAK

Replace ‘S’ by ‘P’ ~ key properties about the first two columns for 2, Ak and P, A J
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Mixed Method dimension comparison 1

u+Kvp = 0

Mixed method for Darcy problem: dvu—f = 0

We compare degree of freedom counts among the three families for use on meshes of
affinely-mapped squares or cubes, when a conforming method with (at least) order r
decay in the approximation of p, u, and div u is desired.

Total # of degrees of freedom on a square (n = 2):

ro| IQE N 1O N | IS+ [S—1 AP | IS AT+ [S7 A2
441= 5 8+1= 9 441= 5

2 12+4 = 16 14+3 = 17 10+3= 13

3 24+9 = 33 22+6 = 28 17+6 = 23

Total # of degrees of freedom on a cube (n = 3):

r |Q7 N2+ Q7 N3] | [SIN?| + [S,aN°| | |87 A% + 1S A°)
6+1= 7 1841 = 19 6+1= 7

2 36+8 = 44 39+4 = 43 21+4= 25

3 | 108+27= 135 72+10= 82 45410 = 55
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Mixed Method dimension comparison 2

u+Kvp = 0

Mixed method for Darcy problem: dvu—f = 0

The number of interior degrees of freedom is reduced from tensor product, to
serendipity, to trimmed serendipity:

# of interior degrees of freedom on a square (n = 2):

ro| o 1Qr Nl IO NG| | IS ol + IS—1AS| | IS Ag| + |S A
0+1= 1 0+1= 1 0+1= 1

2 444= 8 2+3= 5 2+3= 5

3 1249 = 21 6+6= 12 5+6= 11

# of interior degrees of freedom on a cube (n = 3):

r 1Qr NSI+ 197 N3] | ISHAS| + S-S | 1S AS] + 1S A
0+1 = 1 0+1 = 1 0+1 = 1

2 12+8 = 20 3+4 = 7 3+4 = 7

3 54+27 = 81 12+10= 22 9+10= 19
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Mixed Method dimension comparison 3

u+Kvp = 0

Mixed method for Darcy problem: dvu—f = 0

Assuming interior degrees of freedom could be dealt with efficiently (e.g. by static
condensation), trimmed serendipity elements still have the fewest DoFs:

# of interface (edge) degrees of freedom on a square (n = 2):

r

Q7 N (0)| | [S:AT(90R)] | ST AT (00
1 4 8 4
2 8 12 8
3 12 16 12

# of interface (edge+face) degrees of freedom on a cube (n = 3):

ro| QA% | ISR (00)] | |7 AR (90s))
1 6 18 6
2 24 36 18
3 54 60 36
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0 Computational bases for serendipity-type spaces
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Building a computational basis

Goal: find a computational basis for SiA'(03):
« Must be H(curl)-conforming
« Must have 24 functions, 2 associated to each edge of cube
« Must recover constant and linear approx. on each edge

« The approximation space contains:

(1) Any polynomial coefficient of at most linear order:

dx dy dz {1,x,y,z} x {dx,dy,dz} — 12 forms

-yz Xz 0 (2) Certain forms with quadratic or cubic order coefficients
0 Xz Xy shown in table at left — 12 forms

yz Xz Xy

2xy x2 0 « For constants, use “obvious” functions:

2xz 0 x2

2 2xy 0 {(y£1)(zx1)dx, (xx£1)(z+1)dy, (x£1)(y£1)dz}

e.g. (y +1)(z + 1)dx evaluates to zero on every edge

z2 0 2xz o 7 s 102
0 2 oy except {y =1,z = 1} where itis = 4 — constant approx.
29z Xz Xy Also, (y + 1)(z + 1)dx can be written as a linear combo,

by using the first three forms at left to get the yz dx term

yz2  xz2  2xyz
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Building a computational basis

« For constant approx on edges, we used:

{yx1)(zx1)dx, (x£1)(z£1)dy, (x+1)(y+1)dz}

« Guess for linear approx on edges:

xX(y £ ) (z£1)dx, y(x+1)(zt1)dy, z(x+1)(y £1)dz}

ax dy az _ _
v - eg. x(y +1)(z+ 1)dx evaluatestod4xon {y =1,z=1}.
}92 _X’;z X . Unfortunately: ‘x(y +1)(z+1)dx g StA(Os)! ‘
2xy x2 02 Why? x(y + 1)(z + 1)dx = (xyz + xy + xz + x)dx
2xz X
y? 2?(}, 0 but xyz dx only appears with other cubic order coefficients!
0 2yz y?
22 0 2xz « Remedy: add dy and dz terms that vanish on all edges.
0 22 2yz
2xyz X2z X%y
y2z  2xyz  xy?
yz2  xz2  2xyz
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Building a computational basis

Computational basis element associatedto {y =1,z = 1}:
| 2x(y +1)(z +1) A+ (2 + 1) — 1) dy +(y + 1)(x* — 1) dz
v Evaluates to 4x on {y = 1,z = 1} (linear approx.)

v' Evaluates to 0 on all other edges
v Belongs to the space S1A(0s):

2xyz dx + xX2zdy + X2y dz
2xy dx + xX2dy + 0dz
ax dy dz 2xz dx + Ody + x2 dz
76"2 _ij )8/ 2xdx + (—z—-1)dy + (—y—1)dz <« linear order
yz Xz Xy — summation and factoring yields the desired form)
2xy x? 0
2xz 0 x2 There are 11 other such functions, one per edge. We have:
2
yo Sﬁ yoz SiN0s) = EoN'(Os) ® E\N'(Os)
22 0 2xz e . —~
0 2 2z obvious” basis for moFilfled basis for
2xyz  x2z Xy constant approx linear approx
y22 2xyz Xy2 dim 24 = 12 + 12
yz2  xz2  2xyz
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A complete table of computational bases

n=3| k=0 k=1 k=2 k—3
VAO(O3) [] ] 0
r—2 r—1 .
SN | @PEN(Ds) EPEN(Dz)@ EAY (D) 0 )
I:ro ;i01 ~ r—1 .
PFNCs) EPFRN(Os) e A (Ts) P FN(Ds) @ FA*(Ts) 0
i=4 i=2 i=0
B in°0s) PN (Os) P i\ (0s) P 1in3(0s)
i=6 i=4 i=2 i=2
VA9 (O3) 0 0 0
r—2 r—1
SPANC | EPEN (D) P EN (D) 0 0
I:ro ;i01 . r—1
P FN°Cs) PFN (k) e A (Ts) D Fn(Ds) 0
7 5 ) i ) r—1
PN (Cs) PN ([Te) A (Ts) D IiN(Ts) @ :A(Ts) D 1in*(Ts)
i=6 i=4 i=2 i=2
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© Extension to generic quads and hexes
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Serendipity elements struggle with reference mapping

Quadratic serendipity elements, mapped non-affinely, are only expected to converge
at the rate of linear elements. J

ARNOLD, BOFFI, FALK, “Approximation by Quadrilateral Finite Elements,” Math.
Comp., 2002

lu = unllz (VU= un)ll,2

linear — O(h?) O(h)

quadratic —~ O(h?) O(h)
serendipity -

quadratic o T. O(h?) O(h?)
tensor prod. :

Extensions to vector-valued and higher dimensions:

ARNOLD, BOFFI, FALK, “Quadrilateral H(div) Finite Elements,” SINUM, 2005.

ARNOLD, BOFFI, BONIZZzONI, “Finite element differential forms on curvilinear cubic meshes,”
Numer. Math., 2014
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The virtual element technique

{FLF L E[ ok LaF LR 4ok

BDM1 V1,0,0 VS1,0,0 BDFM1 V1,10 VSLLO

{of {ak {af | {of {uf dek Ik
V2,11 v§2,1,1 BDFM2 V221 V82,21

V322 VS3,2,2 BDFM3 V332 V8332
PRESERVING Pk PRESERVING 17( + x Pk

— Analogues of conforming finite element spaces on squares can be treated as virtual elements.
— Explicit basis functions are not needed to implement the method.
—> Related polygonal element methods (HHO, HDG, WG. . .) may offer similar approaches.

BEIRAO DA VEIGA, BREZzI, MARINI, RUSSO “Serendipity face and edge VEM spaces”
Rendlconti Lincei-Matematica e Applicazioni, 2017.
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The Arbogast-Correa technique

Bilinear Map

Reference
Element

A finite element space on a general quadrilateral is built in two parts:
@ Apply Piola mapping to functions associated to boundary of reference element.

@ Define functions on the physical element corresponding to interior degrees of
freedom in a way that ensures relevant polynomial approximation properties.

ARBOGAST, CORREA “Two families of H(div) mixed finite elements on quadrilaterals of minimal
dimension,” SIAM J. Numerical Analysis, 2016
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Recent advances in hex-dominant meshing

— A hex-dominant mesh with ~1.3 million cells, including =1 million hexahedra.
— Re-meshed from a mesh of ~ 10 million tetrahedra.
SOKOLOV ET AL. “Hexahedral-Dominant Meshing,” ACM Trans. Graphics, 2016
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Open source finite element software

E?B'Sé’cc $2 deal.Il

FENICS primarily supports deal.ii primarily supports
simplicial elements quad/hex elements

ALNAS ET AL. “The FEniCS Project Version 1.5” Archive of Numerical Software 2015
BANGERTH ET AL. “The deal.ii Library, Version 8.4,” Journal of Num. Math., 2016

Neither package supports (trimmed) serendipity elements yet. . .
... but that is likely to change in the near future!
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