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What’s relevant in molecular modeling?

(bottom image: David Goodsell)
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What’s relevant in neuronal modeling?

(right image: Chandrajit Bajaj)
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What’s relevant in diffusion modeling?
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Mathematics used in multiscale biological models
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Linear algebra
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Mathematics helps answer distinguish relevant and irrelevant features of a model:

Does the PDE have a unique solution, bounded in some norm?

Does the domain discretization affect the quality of the approximate solution?

Is the solution method optimally efficient? (e.g. Why isn’t my code working?)

Focus of my research in these areas: the Finite Element Method
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The rest of this talk

1 A very brief introduction to the finite element method

2 A mathematical challenge for efficient computation

Employing ideas from analysis, linear algebra, and combinatorics

3 A quick historical quiz. . .
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The Finite Element Method: 1D

The finite element method is a way to numerically approximate the solution to PDEs.

Ex: The 1D Laplace equation: find u(x) ∈ U s.t.
−u′′(x) = f (x) on [a, b]

u(a) = 0,
u(b) = 0

Make the problem easier by making it (seemingly) harder . . .

Weak form: find u(x) ∈ U (dim U =∞) s.t.∫ b

a
u′(x)v ′(x) dx =

∫ b

a
f (x)v(x) dx , ∀v ∈ V (dim V =∞)

. . . but we can now search a finite-dimensional space. . .

Discrete form: find uh(x) ∈ Uh (dim Uh <∞) s.t.∫ b

a
u′

h(x)v ′
h(x) dx =

∫ b

a
f (x)vh(x) dx , ∀vh ∈ Vh (dim Vh <∞)
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The Finite Element Method: 1D

Suppose uh(x) can be written as linear combination of Vh elements:

uh(x) =
∑

vi∈Vh

uivi (x)

The discrete form becomes: find coefficients ui ∈ R such that∑
i

∫ b

a
uiv ′

i (x)v ′
j (x) dx =

∫ b

a
f (x)vj (x) dx , ∀vh ∈ Vh (dim Vh <∞)

Written as a linear system:

[ A ]ji [ u ]i = [ f ]j , ∀vj ∈ Vh

With some functional analysis we can prove: ∃ C > 0, independent of h, s.t.

||u − uh||H1(Ω)︸ ︷︷ ︸
error between cnts

and discrete solution

≤ C h |u|H2(Ω)︸ ︷︷ ︸
bound in terms of

2nd order osc. of u

, ∀u ∈ H2(Ω)︸ ︷︷ ︸
holds for any u with
bounded 2nd derivs.

.

where h = maximum width of elements use in discretization.
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Tensor product finite element methods

Generalizing the 1st order, 1D method
Goal: Efficient, accurate approximation of the solution to a PDE over Ω ⊂ Rn for
arbitrary dimension n and arbitrary rate of convergence r .

Standard O(hr ) tensor product finite element method in Rn:
→ Mesh Ω by n-dimensional cubes of side length h.
→ Set up a linear system involving (r + 1)n degrees of freedom (DoFs) per cube.
→ For unknown continuous solution u and computed discrete approximation uh:

||u − uh||H1(Ω)︸ ︷︷ ︸
approximation error

≤ C hr |u|Hr+1(Ω)︸ ︷︷ ︸
optimal error bound

, ∀u ∈ H r+1(Ω).

Implementation requires a clear characterization of the isomorphisms:

11 21 31 41

2212 32 42

2313 33 43

2414 34 44{
x r y s

0 ≤ r , s ≤ 3

}
←→

{
ψi (x)ψj (y)
1 ≤ i, j ≤ 4

}
←→

monomials ←→ basis functions ←→ domain points
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Serendipity Elements
9 16 25 36 49

O(h2) O(h3) O(h4) O(h5) O(h6)

8 12 17 23 30

For r ≥ 4 on squares: O(hr ) tensor product method : r 2 + 2r + 1 dots
O(hr ) serendipity method: 1

2 (r 2 + 3r + 6) dots

||u − uh||H1(Ω)︸ ︷︷ ︸
approximation error

≤ C hr |u|Hr+1(Ω)︸ ︷︷ ︸
optimal error bound

, ∀u ∈ H r+1(Ω).
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Serendipity Elements

O(h2) O(h3) O(h4) O(h5) O(h6)

8 12 17 23 30

→Why r + 1 dots per edge?
Ensures continuity between adjacent elements.

→Why interior dots only for r ≥ 4?
Consider, e.g. p(x , y) := (1 + x)(1− x)(1− y)(1 + y)
Observe p is a degree 4 polynomial but p ≡ 0 on ∂([−1, 1]2).

→ How can we recover tensor product-like structure. . .
. . . without a tensor product structure?
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Mathematical Challenges More Precisely

O(h2) O(h3) O(h4) O(h5) O(h6)

8 12 17 23 30

Goal: Construct basis functions for serendipity elements satisfying the following:

Symmetry: Accommodate interior degrees of freedom that grow according to
triangular numbers on square-shaped elements.

Hierarchical: Generalize to methods on n-cubes for any n ≥ 2, allowing
restrictions to lower-dimensional faces.

Tensor product structure: Write as linear combinations of standard tensor
product functions.
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2D symmetric serendipity elements

Symmetry: Accommodate interior degrees of freedom that grow according to
triangular numbers on square-shaped elements.

O(h2) O(h3) O(h4)

O(h5) O(h6) O(h7)
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3D elements

Hierarchical: Generalize to methods on n-cubes for any n ≥ 2, allowing restrictions to
lower-dimensional faces.
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Linear combination of tensor products

Tensor product structure: Write basis functions as linear combinations of standard
tensor product functions.

+ + +

- - - =
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Tensor product decomposition

The coefficients in the tensor product decomposition in 2D can be determined from a
‘staircase’ called a lower set.

→

+1

+1−1

−1

coefficient

calculator

→ Place the coefficient calculator at the corners of each step.
→ Add up all values appearing in the staircase.
→ The coefficient for the block is the value of the sum.

Hence: black dots→ +1; white dots→ -1; others→ 0.
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3d coefficient computation

Lower sets for superlinear polynomials in 3 variables:

Decomposition into a linear combination of tensor product
interpolants works the same as in 2D, using the 3D coefficient
calculator at left. (Blue→ +1; Orange→ -1).
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Historical Quiz

What video game is shown on the right?
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