Multiscale biological modeling: Using every area of mathematics that you can imagine

Andrew Gillette

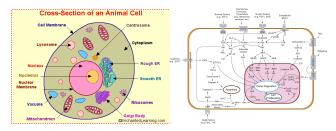
Department of Mathematics University of Arizona

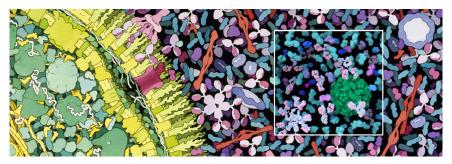
Recruitment Workshop Presentation

Slides and more info at:

http://math.arizona.edu/~agillette/

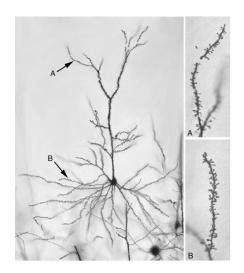
What's relevant in molecular modeling?

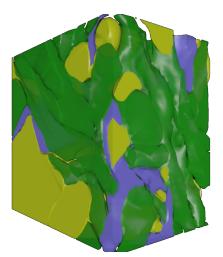




(bottom image: David Goodsell)

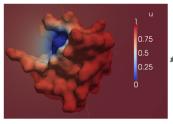
What's relevant in neuronal modeling?

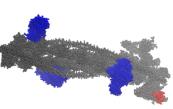


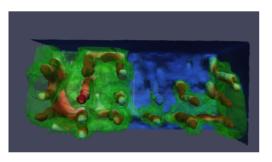


(right image: Chandrajit Bajaj)

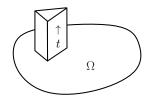
What's relevant in diffusion modeling?

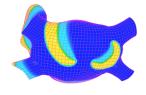






Mathematics used in multiscale biological models





$$\left[\begin{array}{c} \mathbb{A} \end{array}\right] \left[\mathbf{x}\right] = \left[\mathbf{b}\right]$$

Real analysis PDEs Geometry
Topology
Combinatorics

Linear algebra Numerical analysis

Mathematics helps answer distinguish relevant and irrelevant features of a model:

- Does the PDE have a unique solution, bounded in some norm?
- Does the domain discretization affect the quality of the approximate solution?
- Is the solution method optimally efficient? (e.g. Why isn't my code working?)

Focus of my research in these areas: the Finite Element Method

The rest of this talk

A very brief introduction to the finite element method

A mathematical challenge for efficient computation
 Employing ideas from analysis, linear algebra, and combinatorics

A quick historical quiz...

The Finite Element Method: 1D

The **finite element method** is a way to numerically approximate the solution to PDEs.

Ex: The 1D Laplace equation: find $u(x) \in U$ s.t.

$$\begin{cases}
-u''(x) = f(x) & \text{on } [a, b] \\
u(a) = 0, \\
u(b) = 0
\end{cases}$$

Make the problem easier by making it (seemingly) harder . . .

Weak form: find $u(x) \in U$ (dim $U = \infty$) s.t.

$$\int_a^b u'(x)v'(x) \ dx = \int_a^b f(x)v(x) \ dx, \quad \forall v \in V \quad (\dim V = \infty)$$

... but we can now search a finite-dimensional space...

Discrete form: find $u_h(x) \in U_h$ (dim $U_h < \infty$) s.t.

$$\int_a^b u_h'(x)v_h'(x)\ dx = \int_a^b f(x)v_h(x)\ dx, \quad \forall v_h \in V_h \quad (\dim V_h < \infty)$$

The Finite Element Method: 1D

Suppose $u_h(x)$ can be written as linear combination of V_h elements:

$$u_h(x) = \sum_{v_i \in V_h} u_i v_i(x)$$

The discrete form becomes: find coefficients $u_i \in \mathbb{R}$ such that

$$\sum_{i} \int_{a}^{b} u_{i} v_{i}'(x) v_{j}'(x) \ dx = \int_{a}^{b} f(x) v_{j}(x) \ dx, \quad \forall v_{h} \in V_{h} \quad (\dim V_{h} < \infty)$$

Written as a linear system:

$$[A]_{ii}[U]_i = [f]_i, \forall v_i \in V_h$$

With some functional analysis we can prove: $\exists C > 0$, independent of h, s.t.

$$||u - u_h||_{H^1(\Omega)} \leq C \frac{h|u|_{H^2(\Omega)}}{\text{error between cnts}}, \qquad \forall u \in H^2(\Omega)$$
error between cnts and discrete solution 2nd order osc. of u bounded 2nd derivs.

where h = maximum width of elements use in discretization.

Tensor product finite element methods

Generalizing the 1st order, 1D method

Goal: Efficient, accurate approximation of the solution to a PDE over $\Omega \subset \mathbb{R}^n$ for arbitrary dimension n and arbitrary rate of convergence r.

Standard $O(h^r)$ tensor product finite element method in \mathbb{R}^n :

- \rightarrow Mesh Ω by *n*-dimensional cubes of side length h.
- \rightarrow Set up a linear system involving $(r+1)^n$ degrees of freedom (DoFs) per cube.
- \rightarrow For unknown continuous solution u and computed discrete approximation u_h :

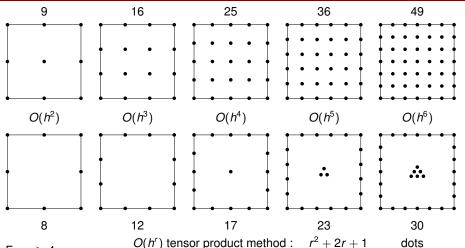
$$\underbrace{||u-u_h||_{H^1(\Omega)}}_{\text{approximation error}} \leq \underbrace{C \, h^r \, |u|_{H^{r+1}(\Omega)}}_{\text{optimal error bound}}, \quad \forall u \in H^{r+1}(\Omega).$$

Implementation requires a clear characterization of the isomorphisms:

$$\left\{\begin{array}{c} x^r y^s \\ 0 \leq r, s \leq 3 \end{array}\right\} \qquad \longleftrightarrow \qquad \left\{\begin{array}{c} \psi_i(x) \psi_j(y) \\ 1 \leq i, j \leq 4 \end{array}\right\} \qquad \longleftrightarrow \qquad \left\{\begin{array}{c} 14 \\ 24 \\ 33 \\ 43 \\ 42 \\ 11 \end{array}\right\}$$

$$monomials \qquad \longleftrightarrow \qquad basis functions \qquad \longleftrightarrow \qquad domain points$$

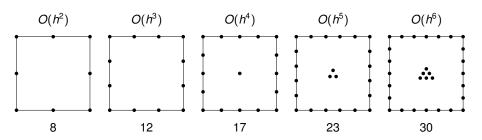
Serendipity Elements



For $r \ge 4$ on squares: $O(h^r)$ tensor product method : $r^2 + 2r + 1$ dots $O(h^r)$ serendipity method: $\frac{1}{2}(r^2 + 3r + 6)$ dots

$$\underbrace{||u-u_h||_{H^1(\Omega)}}_{\text{approximation error}} \leq \underbrace{C \, h^r \, |u|_{H^{r+1}(\Omega)}}_{\text{optimal error bound}}, \quad \forall u \in H^{r+1}(\Omega).$$

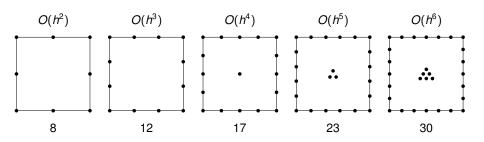
Serendipity Elements



- → Why r + 1 dots per edge? Ensures continuity between adjacent elements.
- → Why interior dots only for $r \ge 4$? Consider, e.g. p(x, y) := (1 + x)(1 - x)(1 - y)(1 + y)Observe p is a degree 4 polynomial but $p \equiv 0$ on $\partial([-1, 1]^2)$.
- ightarrow How can we recover tensor product-like structure. . .

... without a tensor product structure?

Mathematical Challenges More Precisely

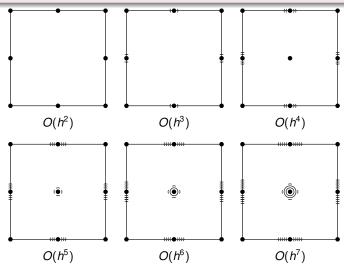


Goal: Construct basis functions for serendipity elements satisfying the following:

- Symmetry: Accommodate interior degrees of freedom that grow according to triangular numbers on square-shaped elements.
- **Hierarchical:** Generalize to methods on n-cubes for any $n \ge 2$, allowing restrictions to lower-dimensional faces.
- Tensor product structure: Write as linear combinations of standard tensor product functions.

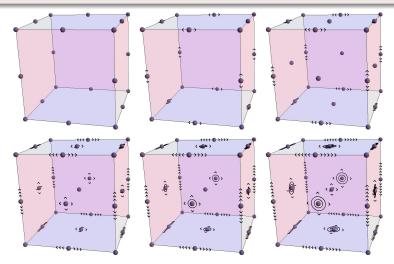
2D symmetric serendipity elements

Symmetry: Accommodate interior degrees of freedom that grow according to triangular numbers on square-shaped elements.



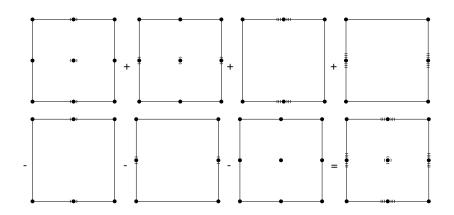
3D elements

Hierarchical: Generalize to methods on n-cubes for any $n \ge 2$, allowing restrictions to lower-dimensional faces.



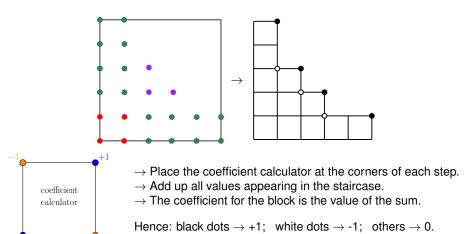
Linear combination of tensor products

Tensor product structure: Write basis functions as linear combinations of standard tensor product functions.



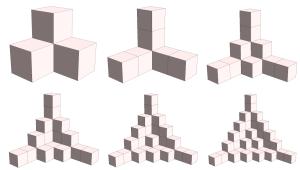
Tensor product decomposition

The coefficients in the tensor product decomposition in 2D can be determined from a 'staircase' called a **lower set**.



3d coefficient computation

Lower sets for superlinear polynomials in 3 variables:



Decomposition into a linear combination of tensor product interpolants works the same as in 2D, using the 3D coefficient calculator at left. (Blue \rightarrow +1; Orange \rightarrow -1).

Historical Quiz

What video game is shown on the right?

