Multiscale biological modeling: Using every area of
mathematics that you can imagine
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What'’s relevant in molecular modeling?

Cross-Section of an Animal Cell

(bottom image: David Goodsell)

Andrew Gillette - U. Arizona Grad Recruitment Workshop Mar 2015 2/18



What'’s relevant in neuronal modeling?

(right image: Chandrajit Bajaj)
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What's relevant in diffusion modeling?
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Mathematics used in multiscale biological models

<
. Geometry
Real analysis Linear algebra
Topology
PDEs Numerical analysis

Combinatorics

Mathematics helps answer distinguish relevant and irrelevant features of a model:
@ Does the PDE have a unique solution, bounded in some norm?
@ Does the domain discretization affect the quality of the approximate solution?
@ |s the solution method optimally efficient? (e.g. Why isn’t my code working?)

Focus of my research in these areas: the Finite Element Method
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The rest of this talk

@ A very brief introduction to the finite element method

@ A mathematical challenge for efficient computation

Employing ideas from analysis, linear algebra, and combinatorics

© A quick historical quiz. ..
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The Finite Element Method: 1D

The finite element method is a way to numerically approximate the solution to PDEs.J

Ex: The 1D Laplace equation: find u(x) € U s.t.

—u"(x) =f(x) on]la,b]
u(a) =0,
ulb)=0

Make the problem easier by making it (seemingly) harder . ..
Weak form: find u(x) € U (dim U = o) s.t.

b b
/ u'(x)V'(x) dx = / f(x)v(x) dx, YveV (dmV =c0)

... but we can now search a finite-dimensional space. . .
Discrete form: find us(x) € Uy (dim U < <) s.t.

b b
/ up(X)vh(x) dx = / f(X)Vh(x) dx, VYvh €V, (dimV, < o)
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The Finite Element Method: 1D

Suppose up(x) can be written as linear combination of V}, elements:

un(x) = > uvi(x)

v;ieVy

The discrete form becomes: find coefficients u; € R such that
b b
Z/ uv/ (x)v/ (x) dx:/ f(X)vi(x) dx, Yvhe Vi (dimVy < o0)
i a a

Written as a linear system:
[Al; [ul;=[f];, Yve Vs

With some functional analysis we can prove: 3 C > 0, independent of h, s.t.

2
U = Unll 1 (o < Chlulpe , Yu e H(Q)
—_———— ——— —
error between cnts bound in terms of holds for any u with
and discrete solution 2nd order osc. of u bounded 2nd derivs.

where h = maximum width of elements use in discretization.
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Tensor product finite element methods

Generalizing the 1st order, 1D method

Goal: Efficient, accurate approximation of the solution to a PDE over Q c R” for
arbitrary dimension n and arbitrary rate of convergence r.

Standard O(h") tensor product finite element method in R":
— Mesh Q by n-dimensional cubes of side length h.
— Set up a linear system involving (r + 1)" degrees of freedom (DoFs) per cube.
— For unknown continuous solution u and computed discrete approximation up:
lu = Unllyr gy < CH Ul yririqy, VU E H™Y(Q).

approximation error optimal error bound

Implementation requires a clear characterization of the isomorphisms:
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Serendipity Elements

9 16 25 36 49
O(H) o(h*) O(h*) o(h°) O(h°)
8 12 17 23 30

O(h") tensor product method :  r? 4+ 2r + 1 dots

> : -
Forr > 4 on squares O(h") serendipity method: 1 (r® +3r+6) dots

U = Unll @) < CH |Ulpret () VU E H™(Q).

approximation error optimal error bound
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Serendipity Elements

o(?) o(h°) o(h*) o(h°) O(h°)
8 12 17 23 30

— Why r + 1 dots per edge?
Ensures continuity between adjacent elements.

— Why interior dots only for r > 47
Consider, e.g. p(x,y) == (1 +x)(1 —x)(1 —y)(1 + y)
Observe p is a degree 4 polynomial but p = 0 on 3([—1, 1]?).

— How can we recover tensor product-like structure. . .
... without a tensor product structure?
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Mathematical Challenges More Precisely

o(H?) O(H®) O(H*) O(K®) O(H°)

8 12 17 23 30

Goal: Construct basis functions for serendipity elements satisfying the following:

@ Symmetry: Accommodate interior degrees of freedom that grow according to
triangular numbers on square-shaped elements.

@ Hierarchical: Generalize to methods on n-cubes for any n > 2, allowing
restrictions to lower-dimensional faces.

@ Tensor product structure: Write as linear combinations of standard tensor
product functions.
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2D symmetric serendipity elements

Symmetry: Accommodate interior degrees of freedom that grow according to
triangular numbers on square-shaped elements. J

L] e [ ] [ ] (@l [ ] ll
O(H®) O(H) ) O(H)
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3D elements

Hierarchical: Generalize to methods on n-cubes for any n > 2, allowing restrictions to
lower-dimensional faces.
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Linear combination of tensor products

Tensor product structure: Write basis functions as linear combinations of standard
tensor product functions. J
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Tensor product decomposition

The coefficients in the tensor product decomposition in 2D can be determined from a
‘staircase’ called a lower set.

— Place the coefficient calculator at the corners of each step.
— Add up all values appearing in the staircase.
calculator — The coefficient for the block is the value of the sum.

coefficient

Hence: black dots — +1; white dots — -1; others — 0.
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3d coefficient computation

Lower sets for superlinear polynomials in 3 variables:

l.I IL .'!'~
L Y

Decomposition into a linear combination of tensor product
interpolants works the same as in 2D, using the 3D coefficient
calculator at left. (Blue — +1; Orange — -1).
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Historical Quiz

What video game is shown on the right?

oo Tgﬂ
CHANGE TO:
-

=3
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