We define trimmed serendipity differential k-forms of order r on an n-cube \(C^n \) by

\[S^k_r(\mathbb{C}^n) = P^k_r(\mathbb{C}^n) + J_1^0(\Lambda^r_n) + J_2^0(\Lambda^r_n). \]

Theorem: The degrees of freedom for \(S^k_r(\mathbb{C}^n) \) associated to a 0-dimensional sub-face \(f \) of \(C^n \), are

\[u \to (|f| u) q, \quad q \in P_{r-2,0,4,4}(\Lambda^r_f) \oplus dH_{r-3,0,4,4}(\Lambda^{r-1}_f), \]

for any \(0 \leq d \leq \min(n, r/2 + k) \).

Theorem (Unisolvence): \(S^k_r(\mathbb{C}^n) \) and all the degrees of freedom vanish, then \(n = 0 \).

Dimension Count

\[\dim S^k_r(\mathbb{C}^n) = \dim P^k_r(\mathbb{C}^n) + \dim J_1^0(\Lambda^r_n) + \dim J_2^0(\Lambda^r_n). \]

Further, each summand has a closed-form expression in terms of binomial coefficients depending only on \(n, k, r \).

References