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Motivation: Neuronal Modeling

@ Dendritic spine distribution and
shape in the hippocampus
correlates with certain types of
brain disease.

A) Neurologically normal (6 months).

B) Mentally retarded (12 months).

C) Alzheimer’s (adult).

D) Fragile X syndrome (adult).

@ Simulating the effect of spine
modification requires accurate
geometry and stable methods for
modeling electric activity.
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Problem Statement

The PDE governing electric activity depends on the scale considered:

@ Micron scale (1076 m):

d 8%V vV V-V,

4R 92 — "ot Rm

@ Nanometer scale (107° m):
Electrodiffusion Equations

jk = — (VCK + %Cké>
0 =div (eE') +Y azF
E =Vo¢

0 = %Ck + DkdiV Ik

Problem Statement

Characterize the geometry-sensitive coupling parameters between these equations
and cast both into a consistent discrete exterior calculus framework.
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e Discrete Exterior Calculus Background
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Why consider differential forms for models?

@ Differential k-forms model k-dimensional physical phenomena.

e <] <D

@ The exterior derivative d generalizes common differential operators.

@) —2 L AQ) —I L A2(Q) —2 . A3(Q)
grad curl div

@ The Hodge Star transfers information between complementary dimensions.
N(Q) — » — N(Q)

A'(Q) — » — N2(Q)

Fundamental Theorem of Discrete Exterior Calculus

Stable computational methods must recreate the essential properties of smooth
exterior calculus on the discrete level.
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What are discrete differential forms?

@ Discrete differential k-forms are k-cochains, i.e. linear functions on k-simplicies.
43

2.1 3.8
0.6 7
52 ox 4
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@ The discrete exterior derivative is D = (9)”, the transpose of the boundary
operator.
0 Dg 1 D4 2 Dy 3
(grad) (curl) (div)
@ The discrete Hodge Star transfers information between complementary
dimensions on dual meshes.
L
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An overview of DEC theory

Smooth exterior calculus:

primal: A° ® =LY & /_) = \2 “ A
*
—, \ﬁ ;
dual: A° > > A : > A? - A3
Discrete exterior calculus:
primal: 0 L > > 2
D,
dual: ° .

Computational Visualization Center, ICE S The University of Texas at Austin Oct 2009



Selected Prior Work

@ Importance of differential geometry in computational methods for EM:

BossAvIT Computational Electromagnetism Academic Press Inc. 1998

@ Adoption of DEC techniques by national laboratory scientists:

CASTILLO, KOINING, RIEBEN, STOWELL AND WHITE A novel methodology for robust
computational electromagnetics Technical report, LLNL, 2003

@ Primer on DEC theory and program of work:

DESBRUN, HIRANI, LEOK AND MARSDEN Discrete Exterior Calculus arXiv:math/0508341v2
[math.DG], 2005

@ Applications of DEC to general relativity, Darcy flow, and elasticity problems:

FRAUENDIENER Discrete diffrential forms in general relativity Classical and Quantum Gravity,
23(16):S369-S385, 2006

HIRANI, NAKSHATRALA AND CHAUDHRY Numerical method for Darcy Flow derived using Discrete
Exterior Calculus arXiv:0810.3434v1 [math.NA], 2008

YAVARI On geometric discretization of elasticity Journal of Mathematical Physics,
49(2):022901-1-36, 2008
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e Discrete Exterior Calculus for Electrodiffusion
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Electrodiffusion Equations

Dy | diffusion coefficient
cx | concentration of kth ion species F | Faraday constant

R

T

Jk | flux of kth ion species gas constant

E | electric field ?emperature

¢ | electric potential Zx | ion valence

€ dielectric coefficient

@ Nernst-Planck Equation:

R F .
—Jk = Vi + T2 ckE
~ — AT
total fon flux flux du'e t,o diffusion flux due to drift in electric field
(Fick’s law) (Ohm’s law)

@ Poission’s equation for electric potential:

div (eE’) = —Z ckzkF, E=V¢

@ Continuity Equation:

0 —
a Ck = — Dy divdy
v change in total ion flux

time derivative of concentration
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Electrodiffusion Equations - Rewritten

cx | ion concentration
i | ion flux
E | electric field
Jo = — (Vck + %CKE) ¢ | electric potential
. = D, | diffusion constant
= E) ckzkF K
9 div (6 + 2 G2k F | Faraday constant
E =V¢ - R | gas constant
0 = Jck + Dydiv Ji T | temperature
Zx | ion valence
€

dielectric constant
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Where are the variables valued?

Surface points Voronoi (primal) cells Delaunay (dual) cells

!

—— - L —
Ck ion concentration | Delaunay tetrahedra
Jf ion flux Delaunay faces
E | electric field Voronoi edges
Jo o=-— (Vck i %Ck E‘) ¢ | electric potential Voronoi points
0 =dv (eE‘) 3 ckzkF
E =V¢
0 = 2cx+ Didiv Jg
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Electrodiffusion Variables as k-forms

J =-— (VCK + %Cké) cx | ion concentration | dual tetrahedra
N o Ji | ion flux dual faces
0 =div(eE cezkF || X
. v (6 ) + 2 G E | electric field primal edges
E =V9¢ B ¢ | electric potential | primal points
0 = 2ok + Didiv Ji
Primal Do (=) Dy e Dy
(VOfOﬂOi) (grad) ,@\(cur)/_) (div)
S
Dual C Dy Dy
(Delaunay) ) (grad) J (curl)
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Electrodiffusion Variables as k-forms

Jo =-— (Vck + %ckE')
0 =div (eE') + 3 cezkF
E =V¢

0 = 2ci+ Didiv Jg

ion concentration
ion flux

electric field
electric potential

dual tetrahedra
dual faces

primal edges
primal points

Dy

(grad)
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Electrodiffusion Variables as k-forms

J =-— <ka + g, E-) cx | ion concentration | dual tetrahedra
. = Ji | ion flux dual faces
0 =d E ckzkF A
. v (6 ) + 2 G E | electric field primal edges
E =V9¢ & | electric potential | primal points

0 = 2ci+ Didiv Jg
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Electrodiffusion Variables as k-forms

jk = — (VCk + %Cké)
0 =div (eE‘) + > ckzkF
E =V¢

0 = 2ok + Didiv Ji

cx | ion concentration
Jk | ion flux

E | electric field

¢ | electric potential

dual tetrahedra
dual faces

primal edges
primal points
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Electrodiffusion Variables as k-forms

jk = — (VCk + %Cké)
0 =div (eE‘) + > ckzkF
E =V¢

0 = 2ok + Didiv Ji

cx | ion concentration
Jk | ion flux

E | electric field

¢ | electric potential
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dual faces
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Electrodiffusion Variables as k-forms
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0 =div (eE‘) + > ckzkF
E =V¢
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Electrodiffusion Variables as k-forms

jk = — (VCk + %Cké)
0 =div (eE‘) + > ckzkF
E =V¢

0 = 2ok + Didiv Ji

cx | ion concentration
Jk | ion flux

E | electric field

¢ | electric potential

dual tetrahedra
dual faces
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e Coupling the Equations
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Coupling the Equations

V | voltage
z | axial direction
d 82V vV V-V R; | axial resistance
Roz _“"ar T R, Rm | membrane resistance
Cm | membrane capacitance
Wo | resting potential

@ Compartment model: ‘ Cn% = —im + lext

@ in = sum of trans-membrane currents
@ g = sum of currents injected to intracellular space

S~ =

V' in compartment = ¢ at Voronoi points of interface

interface surface area
compartment surface area

(summand in jext) - ( ) = Jy at Delaunay faces of interface

Computational Visualization Center, ICE S The University of Texas at Austin Oct 2009 23/25



@ Define suitable interpolants for each of the electrodiffusion
variables based on the Discrete Exterior Calculus analysis.

@ Prove stability of the associated numerical method.

@ Consider subtleties arising from boundary conditions (stay tuned
for Dr. Rand’s talk. . .)
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Questions?

@ Slides available at http://www.ma.utexas.edu/users/agillette/
@ Thanks to the organizers for the invitation!
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