A Most Amazing Formula

As far as is apparent from casual inspection, the single variable integral

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x
$$

is only remotely connected with circles. Not so, and the calculation of this integral uses some of the tricks we have learned in Math-223, and provides us with a most amazing formula. Let us examine a double indefinite integral which clearly is associated with circles. Let

$$
\begin{aligned}
I & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\lim _{r \rightarrow \infty} \int_{x^{2}+y^{2} \leq r^{2}} e^{-x^{2}} \cdot e^{-y^{2}} d x d y \\
& =\lim _{r \rightarrow \infty} \int_{0}^{r} \int_{0}^{2 \pi} e^{-r^{2}} \cdot r d r d \theta \\
& =\lim _{b \rightarrow \infty} 2 \pi\left(-\left.\frac{1}{2} e^{-r^{2}}\right|_{0} ^{b}=\pi\right.
\end{aligned}
$$

Note the shift to polar coordinates.
But we also see that since the variable of integration is irrelevant to the value of an improper integral,

$$
\int_{-\infty}^{+\infty} e^{x^{2}} d x=\int_{-\infty}^{+\infty} e^{y^{2}} d y
$$

and we can write

$$
\begin{aligned}
I & =\lim _{m \rightarrow \infty} \int_{-m}^{m} \int_{-m}^{m} e^{-x^{2}-y^{2}} d x d y \\
& =\lim _{m \rightarrow \infty}\left(\int_{-m}^{m} e^{-x^{2}} d x\right)\left(\int_{-m}^{m} e^{-y^{2}} d y\right) \\
& =\lim _{m \rightarrow \infty}\left(\int_{-m}^{m} e^{-x^{2}} d x\right)^{2}
\end{aligned}
$$

So

$$
\left(\int_{-\infty}^{+\infty} e^{-x^{2}} d x\right)^{2}=\pi
$$

And

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Thus the integral of an exponential turns into the square root of the ratio of a circle's circumference to its diameter. Most amazing.

