
A Most Amazing Formula

As far as is apparent from casual inspection, the single variable integral∫ +∞
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is only remotely connected with circles. Not so, and the calculation of this
integral uses some of the tricks we have learned in Math-223, and provides
us with a most amazing formula. Let us examine a double indefinite integral
which clearly is associated with circles. Let
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Note the shift to polar coordinates.
But we also see that since the variable of integration is irrelevant to the value
of an improper integral, ∫ +∞
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and we can write
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Thus the integral of an exponential turns into the square root of the ratio of
a circle’s circumference to its diameter. Most amazing.
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